(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。 (2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
b<a 2
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
180 A
2
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
4、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用:
位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第十章 四边形
考点一、四边形的相关概念 (3分) 1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。 2、凸四边形
把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。
3、对角线
在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。 4、四边形的不稳定性
三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。
5、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。 四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于(n 2) 180°; 多边形的外角和定理:任意多边形的外角和等于360°。 6、多边形的对角线条数的计算公式
设多边形的边数为n,则多边形的对角线条数为
n(n 3)
。 2
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。 (2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。 (3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形 (2)定理1:两组对角分别相等的四边形是平行四边形 (3)定理2:两组对边分别相等的四边形是平行四边形 (4)定理3:对角线互相平分的四边形是平行四边形 (5)定理4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离处处相等。 5、平行四边形的面积 S平行四边形=底边长×高=ah 考点三、矩形 (3~10分) 1、矩形的概念
有一个角是直角的平行四边形叫做矩形。 2、矩形的性质
(1)具有平行四边形的一切性质 (2)矩形的四个角都是直角 (3)矩形的对角线相等 (4)矩形是轴对称图形 3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形 (2)定理1:有三个角是直角的四边形是矩形 (3)定理2:对角线相等的平行四边形是矩形 4、矩形的面积 S矩形=长×宽=ab
考点四、菱形 (3~10分) 1、菱形的概念
有一组邻边相等的平行四边形叫做菱形 2、菱形的性质
(1)具有平行四边形的一切性质 (2)菱形的四条边相等
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形 4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半 考点五、正方形 (3~10分) 1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质 (2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。 3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证有一组邻边相等。 先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下: 先证明它是平行四边形; 再证明它是菱形(或矩形); 最后证明它是矩形(或菱形) 4、正方形的面积