第3章转台机械结构设计
3.1 轴系设计
各框架之间通过轴系连接在一起,通过轴系传递力矩及传动精确的回转运动。轴系由轴、轴承、连接机构等组成。内框结构如图3-1所示,图3-2 是转台外框轴系结构。内外框轴均由两段轴组成,一端连接电机,另一端连接光电码盘,通过胀紧套与内外框连接。轴采用中空结构,这样既可以空心过电缆线,以消除导线浮动带来的系统干扰力
矩,又可增大结构,减小重量和转动惯量。
图3-1 转台内框轴系结构
哈工大综合课程设计――双轴转台设计_图文(精)
图3-2 二轴转台轴系结构
3.1.1 轴承的选择与固定
在轴系的设计过程中,主轴性能很大程度上取决于支承轴承的刚度。转台回转精度高,且经常工作于振动冲击(高频率的简谐运动、低速(或摆动状态下,因此轴承不仅具有灵敏轴承的高精度、低摩擦特性,还要求轴承具有较高的刚度和抗卸载能力。
在轴承的配置型式上则根据受力及负载情况相应的采用面对面式或背对背式。轴承固定方式有两种:两端固定、一端固定一端游动。如图3-3所示,在转台中采用两端固定方式,限制轴的轴向运动。
哈工大综合课程设计――双轴转台设计_图文(精)
(a 一端固定一端游动(b 两端固定
图3-3 轴承固定方式
用于转台的轴承有滚动轴承和空气静压轴承。高精度滚动承,经过预紧和精密调整后,可使轴系的精度很高,而且滚动轴承的刚度承载能力大。但滚动轴承是接触式轴承,长时间使用由于滚动体和滚道之间的磨损会降低其精度和刚度,精度保持性不好,而且预紧和调整也比较麻烦。
空气轴承的轴套和轴之间无接触,精度保持性好,回转精度可以比轴本身的加工精度提高3 倍以上。特别适用于精度高、承载低、转速低的转台。空气轴承的缺点是要有一套供气设备和系统而且其制造工艺复杂、成本高。
哈工大综合课程设计――双轴转台设计_图文(精)
本次设计转台精度一般,采用角接触球轴承。优点是可以同时承受轴向载荷和径向载荷,可以使轴系结构设计比较简单,可以容易地预紧和消除间隙。角接触球轴承承载能力强,支承刚度相对深沟球轴承高,摩擦力矩较小。
本次内框轴承选用7014C 内径70轴承,外框选用QJ224内径120两对一起。本次负载最大为15KG ,而框架多采用铝制,所以预估轴承寿命和承载力余量很大。
3.1.2 轴承的安装与预紧
转台轴承在安装时一般给予一定的轴向预紧力,使内外圈产生相对位移,从而消除游隙,并在套圈和滚动体接触处产生弹性预变形,以此来提高轴承的旋转精度和刚度。预紧力可以利用金属垫片或者调整螺母来实现。如图3-4和3-5所示,内框外框轴承都是用金属环压紧,中间金属垫片实现两轴承预紧,从而提高其回转精度。
图3-4 内框轴承预紧
图3-5 外框轴承预紧 3.13 轴承跨距的计算
哈工大综合课程设计――双轴转台设计_图文(精)
选择精度为P2的轴承,由《机械精度设计基础》表6-2可知其径向跳动为mm 0025.0,故可求得其要求跨距为
(
mm 8.2573600
2tan /105.26=?=-l 内框安装的轴承提供的跨距为:mm 58.4615sin 9021=??= l 安装本身的跨距为:mm 5402=l
故设计提供的总跨距为mm 8.257mm 49050540120=>=-=-=l l l l 外框轴承安装位置对跨距影响相互抵消
所以,有结构设计得出的跨距满足实际要求,故轴和轴承的尺寸符合要求。
3.1 轴与框架的连接
轴与孔的一般连接方式有:键连接、过盈配合。如图3-6 所示。键连接虽然能传递力矩,但由于加工误差,存在间隙,造成误差。过盈配合连接虽然无角度误差,但配合精度要求高,才能保证轴与孔的同轴度要求,而且不可调。
(a 键连接 (b 过盈配合
图3-5 轴与框架连接方式
哈工大综合课程设计――双轴转台设计_图文(精)
转台轴与孔的连接可用螺钉连接和胀紧套连接。轴与框架孔的配合采用过渡配合,既不存在大的间隙(像键连接,又不需要高的配合精度(像过盈配合,加工装配都比较简单。但是,要求轴与孔的同轴度比较高,不能承受过载,螺钉孔在一定程度上削弱了轴和框架的刚度。本次采用胀紧套连接,如图3-6 所示。胀紧套12~14个紧固螺钉,在装配过程中,可以逐个拧紧。在轴与框架内孔的同轴度有误差的情况下,可以通过紧固螺钉进行调整,以保证整个转台的精度指标。
图3-6 胀紧套连接方式
3.2.1 胀紧套尺寸选择以及校核
各种胀套已经标准化,可根据轴和毂孔尺寸以及传递载荷的大小,从标准中选用合适的的型号和尺寸。
选择时应满足:
传递扭矩时:M M t ≥
传递轴向力时: F F t ≥
传递扭矩和轴向力时:225.0(a t F d M M ??+≥
式中 t M —胀紧套的额定扭矩(N ·m
哈工大综合课程设计――双轴转台设计_图文(精)
M —需传送的扭矩(N ·m
t F —胀紧套额定轴向力(N
d —传动轴直径(m
a F —轴向力(N
根据胀紧套的额定扭矩确定尺寸,尺寸如图3-7 所示,具体尺寸数据见参考文献表3-1。
图3-7 胀紧套尺寸
3.3 框架设计
框架结构如图3-8 和3-9所示。框架的设计顺序是:由内到外。内框架用于安装被测元件(或称为负载,设计受到负载尺寸的约束。
哈工大综合课程设计――双轴转台设计_图文(精)
图3-8 外框结构
哈工大综合课程设计――双轴转台设计_图文(精)
图3-9 内框结构
框架断面为空心矩形,重量轻、刚度好。由于采用的是力矩电机,电机的大小主要取决于各轴系的转动惯量和轴系工作时的最大角加速度,为了最大限度地降低电机质量尤其是内电机的重量,材料选用铸造铝合金(ZL205A,可使框架具有较高的刚度和较小的转动惯量。
若单方面提高框架刚度必然要求增大框架的壁厚,转动惯量则会提高;而单方面降低转动惯量必然要牺牲框架刚度。目前常采用现代设计方法,借助于有限元分析软件对所要设计的框架进行优化设计,使框架有一个较高的固有频率同时,框架质量最轻。3.4 限位装置设计
本次设计转台外框的转角范围是
,为了防止转过范围,造成线路缠绕甚至扯
120
断,要有限位装置,起保护作用。图3-10是转台结构图,在外框与支座上安装限位装置,具体结构如图3-11 所示,当转角范围超出设定范围时,外框与支座上的限位装置接触在一起,从而起到限制转角范围的作用。在限位装置上常安装橡胶套,可起到缓冲撞击力的作用,避免损坏限位装置。