人脸识别技术综述_张翠平(4)

2021-09-24 20:50

图6 定义在已知脸和待识别脸上的二维网格S和S1

890

E(M)=

中国图象图形学报第5卷(A版)

ii,i

1

2

-

〈Ci,Xj〉

+

CiXj〈(5)

法优于特征脸方法的原因,如向人脸库中加入新的人脸时,由于不能保证已有特征脸的通用性,因而有可能需要重新计算特征脸;而对于弹性匹配的方法,则不需要改变已有的数据,通过直接加入新的模板

数据即可,但计算较复杂是弹性匹配的一大缺点.根据引言中提出的低层次特征和高层次特征的定义,这里的小波特征类似于外界景物在人眼视网膜上的响应,属低层次特征,没有线、面、模式的概念.由于低层次特征中信息的冗余不仅使得计算复杂,而且由于大量与识别无关的信息没有过滤掉,因而识别率会大打折扣,另外特征脸也存在这样的问题,其中典型的无用信息就是头发.

针对弹性匹配方法的缺陷,可从以下两方面进行改进:一是降低计算复杂度,即对表达人脸的二维矢量场进行特征压缩和提取;二是减少冗余信息,即将所提取出来的低层次特征和高层次特征(如眼角、鼻端的位置等)结合起来,以突出关键点的识别地位.1.3.2 对弹性匹配方法的改进及分析

文献[20]提出了一种弹性匹配的改进方法,即

2

λ∑[(i1-i2)-(j1-j2)]

  式中的第一项是计算两个矢量场中对应的局部特征Xj和Ci的相似程度,第二项则是计算局部位

置关系和匹配次序.由此可见,最佳匹配也就是最小能量函数时的匹配.

在求能量函数实现匹配的时候,可以有如下两种匹配的方法:其中一种是严格的匹配方法;另一种匹配即所谓弹性图匹配方法(见图7).由图7可见,网格S经过了变形,即由原来网格S中的一点对S1

中一点的严格匹配,变成了S中一点和S1中一点领域范围内的匹配,其目的是为了进一步减小能量函数,通过最终收敛到一个最小值,来实现弹性匹配,正是这样的匹配容忍了表情的细微变化.

图7 弹性匹配

将KL变换应用于小波变换,来生成二维网格中顶点的矢量串,以减少其维数,从而大大减少了表达一幅人脸所需要的特征数量,而识别率不会明显下降.

文献[21]是采用人脸基准点,而不是采用二维网格作为拓扑图的节点,同时节点特征也是小波变换特征,即它忽略了除重要人脸部件以外的特征数据,把研究的重点直接定位到感兴趣的区域(参照图8).

根据JunZhang[15]对综合MIT、Olivetti、Wwizmann、和Bem等人脸库所形成的包括272幅照片的综合人脸库,分别用KL方法和弹性匹配方法进行识别试验比较

[15]

,所得的识别率分别为66%

和93%.其中KL变换的识别率很低,其原因主要

是由于综合库里来自4个人脸库的人脸图象在光照上有很大的差异所造成的,文献[15]之所以作出了弹性图形匹配优于KL变换的结论,其原因之一是由于拓扑图的顶点采用了小波变换特征,因为它对于光线、变换、尺寸和角度具有一定的不变性.大家知道,小波特征分析是一种时频分析,即空间-频率分析,若空间一点周围区域的不同的频率响应构成该点的特征串,则其高频部分就对应了小范围内的细节,而低频部分则对应了该点周围较大范围内的概貌.根据该原理,文献[20]提出了用数学形态学上的腐蚀扩张方法形成的多尺度(多分辨率)特征矢量来取代小波特征,并证明了它具有和小波特征相似的效果,它能够反映空间一点周围的高低频信息.现已证明,弹性图形匹配能保留二维图象的空间相关性信息,而特征脸方法在将图象排成一维向量后,则

图8 基于部件的拓扑图

文献[21]还采用了和文献[11]不同的结构来存储人脸特征(如图9所示).

图9 人脸特征库存储结构

第11期张翠平等:人脸识别技术综述

891

  由于文献[11]中特征库的存储是面向人脸的,即对每一张人脸都需要存储描述该人脸的整个拓扑图,因而导致了人脸的特征库很庞大,文献[21]中特征库的存储是面向人脸基准点的(如图9),且对应每个基准点有一串的特征矢量,当由某一人脸的对应基准点提取出来的矢量不同于库中已有的任意矢量时,就添入到该结构中存储起来,并编号.这样识别每个人脸只需知道人脸对应基准点在该存储结构中的特征矢量序号即可.该存储结构一个主要优点是,由于不同人脸在同一个基准点所对应的特征矢量可能相同,因此和面向人脸的存储形式相比,数据量会大大减少;另一优点是该存储结构有很强的表达潜力,设有10个基准点,如库中每一基准点都存储了50个特征矢量,那么该存储结构能表达50个不同的人脸.由此可见,文献[21]对文献[11]方法的一大改进是结合了人脸的高层次特征.

另外,弹性匹配方法在实现时,需要考虑具体的参数选择,如二维网格的大小、小波变换参数的选择等,这些参数都会影响识别的效果.毫无疑问,有效的识别效果依赖于关键识别信息的提取,如采取多大的人脸分辨率?能否对提取出来的特征(具体的或抽象的)进行筛选?经验知识使我们关注人脸部件及其附近的特征,而能否再次对这些特征进行筛选?并有何依据?文献[2]正是希望能够回答这些问题.文献[2]的方法称为紧凑多层图形方法,它是采用三维的拓扑图来表达人脸(如图

10).

10

特征选择后,不同人脸的拓扑图保留的节点不完全一样,因此用于比较的两个人脸的三维拓扑图在数值上和结构上都不相同,为此,文献[2]定义了一种距离来计算它们的相似度.为提取活跃特征,我们曾尝试利用那些手工提取的关键点,来生成训练库的形状无关模型(不是形状无关人脸),即通过插值小波变换后生成的二维拓扑图来形成人脸的连续表达模型,并假设所有人的脸内差异相同(即表情等),然后根据训练库的统计形状无关模型,在一人一张照片的情况下,估计出个人表达模型中的活跃特征.打个比方,人的眼睛都是相似的,假设眼睛的分布为高斯分布,那么一个眼睛离平均眼睛越远,这个眼睛的特征就越显著,即,若有一定的与众(平均眼)不同性,就可以认为是该人的活跃特征,详细内容参考文献[2],该文有很多创新,它是以人脑对人脸的识别为依据,因此有很好的参考价值.

通过上述的介绍分析,可看出弹性匹配方法比特征脸识别方法前进了一大步.它是采用小波变换特征来描述人脸的局部信息,并和人眼视网膜对图象的响应相似[2],而且一定程度上容忍光线等干扰,对细微表情也不敏感.而且弹性匹配中的人脸模型还考虑了局部人脸细节,并保留了人脸的空间分布信息,且它的可变形匹配方式一定程度上能够容忍人脸从三维到二维投影引起的变形.目前还没有见到国内有利用弹性匹配进行识别的相关报道,但是从国外众多的关于弹性匹配的研究结果来看,它在人脸识别众方法中具有重要地位.1.4 传统的部件建模的方法

人脸识别技术综述_张翠平(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:议论文基本结构范文:还是淡泊宁静些好

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: