文献[8]认为在人脸识别中,模型匹配方法要优于基于相对距离的特征分析方法.尽管如此,传统的部件分析方法还是被一些研究室用于人脸识别,究其原因,一方面是由于其它方法还处于摸索阶段,另一方面是利用曲线去拟合部件、分析部件的形状比较直观,也容易取得一定的成果[6].
在各种人脸识别方法中,定位眼睛往往是人脸识别的第一步,由于两眼睛的对称性以及眼珠呈现为低灰度值的圆形,因此在人脸图象清晰端正的时候,眼睛的提取是比较容易的,如从400幅人像库上可取得96%的眼睛定位率
[6]
图10 表达人脸的三维拓扑图
该图构成了一个金字塔的人脸模型,而且每一层中节点的特征矢量也是小波变换的结果.通过这样的金字塔模型就实现了同一个人脸的多分辨率表达.另外,文献[2]有如下两点创新:(1)将高低层特征联系起来,并通过手工选择一些关键点(如眼角、嘴角等)来定位三维拓扑图,同时去除了背景、头发等所在节点;(2)对三维拓扑图的特征进行了特征选择,选出了活跃的特征(包括节点内的特征分量和不同节点之间两种活跃性能比较),还去除了相当多的,,但是如果人脸图象模
糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对位置等),而且这将使得眼睛的定位变得很复杂.由于通常眼睛的形状模型为[22]
[22]
892
中国图象图形学报第5卷(A版)
抛物线的参数和位置能够用作表达当前人脸的特征,文献[6]考虑到眼睛用椭圆表达过于简单,故又采用了二值化,并通过跟踪以得到眼睛形状的方法,由于眉毛和脸形的形状具有任意性,因此在一些研究中曾采用snake动态能量曲线来逼近形状[13,22],如脸颊的形状采用了折线,下巴采用抛物线的模型.这些都是传统的提取和分析形状的方法.虽然人脸是刚体,可实际图象中,部件未必轮廓分明,有时人用眼看也只是个大概,计算机提取就更成问题.另外,由于用抛物线、椭圆或者直线作为模型也不能很好的表达反映变化多端的人脸部件,且由于人脸识别还受到表情的影响,且不能在模型中表达表情,因而导致描述同一个人的不同人脸时,其模型参数可能相差很大,而失去识别意义,这也是部件建模识别方法近年受冷落的原因.尽管如此,在正确提取部件以及表情变化微小的前提下,该方法依然奏效,因此在许多方面仍可应用,如对标准身份证照的应用.
一个重要方面是特征的选择,也就是需选出最活跃的识别特征,去除对识别不重要的信息.在人脸识别的特征选择中,生物心理学家首先研究了人脸各部件对识别的重要性,接着文献[2]从模式识别的角度出发,结合人脸各部件信息,并运用最大后验概率,对表达人脸的低层次特征进行了筛选,从而减少了人脸信息的存储量,并改善了识别的效果.
2.2 人脸的定位问题
虽然人脸定位问题是人脸识别的第一步,但在前面介绍各种人脸识别方法的时候,并没有介绍具体的定位问题.事实上,对大多数方法而言,人脸的定位过程也就是人脸识别特征的生成过程,而且定位算法也是和识别算法密切相关的.为了说明这一点,下面给出一些人脸识别所采用的定位方法:方法1 特征脸的方法也可用于定位人脸,这是因为人脸模式在特征脸子空间的投影系数基本相似,若先将子图在特征脸空间投影后重建,然后比较原图和重建图,就能够说明原图是否是人脸,这是因为特征脸空间能反映人脸的分布,而对于非人脸则没有很好的表达力,因此重建图和原图的差异会较大.
方法2 最初的模板匹配方法是直接计算人脸图象和模板人脸图象之间的相似度,匹配最好时,即是人脸在原图中的位置,如弹性图形匹配中,采用的也是一种模板匹配,但是其参与匹配的是用小波特征表达的二维(或三维)拓扑图,若将模板拓扑图在全图生成的拓扑图上移动匹配(严格的或弹性的),则其最佳匹配就给出了人脸的位置,如文献[2]就采用了多分辨率的三维模型,其定位的时候是从最低分辨率开始定位,然后依次增加分辨率,直到位置不变为止,这是由于文献[2]考虑的是定位的分辨率可以远小于识别所需要的分辨率.
方法3 在灰度和形状分离的可变形模型中,很关键的一步是将形状模型自动定位到未知图中,因此匹配采用了ASM(activeshapemodel)的方法[14],其在训练阶段,所有的形状模型都是手工定位的(见图1),由此生成形状特征子空间,且任何形
-是平均形状;P状都可表达为Xi=-X+Pb.其中,X是由训练生成的形状特征子空间的基所排列成的矩
-)用形状特征子空间表达;b为坐阵;也可将(Xi-X
标系数矢量,一般通过对训练库进行统计分析,就能
够给出b的统计特性,如均值、方差等,当b在合理,2 人脸识别方法的分析和总结
2.1 特征来源以及特征的后处理
众所周知,人脸的结构大体相同,所不同的是一些细节上的差异,原始的人脸图象不仅数据庞大,而且还会随着拍摄条件及表情神态变化而变化,这就使得人脸的识别成为模式分析中的一个难题.一般从人脸图象上进行有效的识别需要提取稳定的人脸特征,目前所利用的特征可以概括为形状、灰度分布、频域特征3种.其中,形状特征包括人脸各部件的形状以及人脸各部件之间的相对位置,这是最初研究所采用的特征;灰度分布特征,即将人脸图象看成一维或二维灰度模式,所计算出的不同灰度模式之间的距离就是整体的灰度分布特征,例如特征脸的方法,此外还有描述局部关键点领域的灰度分布特征的分析方法;频域特征,即将人脸图象变换到频域后所做的特征脸分析方法就是频域特征脸方法,此时的特征即为频域特征,如小波特征就是频域特征.虽然形状特征是3个特征中最具体形象的特征,但是它也和灰度特征一样受到光照、角度和表情的影响,而频域特征虽然相对较稳定,但作为低层次特征,不易直接用于匹配和识别,因此对它进行进一步的解释是目前需要解决的问题.
在弹性匹配中,若对每个节点运用KL变换,则,.
第11期张翠平等:人脸识别技术综述
893
的形状特征.具体的定位是采用形状模型和模型上点的局部灰度分布相结合的方法来实现的,而匹配度的计算则是通过用模型上点的当前局部灰度分布和经验灰度分布匹配的加权和来表示.在达到最佳匹配时,待识别人脸的形状模型参数和模型上每点的局部灰度分布参数也同时确定了,所以说,定位的过程也就是识别的过程.
方法3在定位人脸的同时也就定位出了具体的部件位置,虽然方法1和方法3的基本原理不需要定位人脸的部件,而依赖于部件分析来进行人脸识别的方法通常是应用一些先验知识(如眼睛的投影直方图形状、人脸的部件分布比例等)来初步给出人脸的大致位置,然后再精确定位人脸的各个部件.这里部件的定位通常使用投影方法、hough变换的方法以及构造模型能量函数的匹配方法.2.3 识别效果的比较