【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.
10.(3分)(2018?娄底)如图,往竖直放置的在A处由短软管连接的粗细均匀
第10页(共28页)
,
细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为( )
A.4cm B.6cm C.8cm D.12cm
【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x?S+x?2S=6?S+6?S,然后求出x后计算出AC即可.
【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S, ∵∠BAH=90°﹣60°=30°, ∴AC=2CH=x,
∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S, ∵x?S+x?2S=6?S+6?S,解得x=4, ∴AC=2x=8,
即AB中水柱的长度约为8cm. 故选:C.
【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
11.(3分)(2018?娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=( )
第11页(共28页)
A. B.﹣ C. D.﹣
【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.
【解答】解:∵小正方形面积为49,大正方形面积为169, ∴小正方形的边长是7,大正方形的边长是13, 在Rt△ABC中,AC2+BC2=AB2, 即AC2+(7+AC)2=132, 整理得,AC2+7AC﹣60=0, 解得AC=5,AC=﹣12(舍去), ∴BC=∴sinα=
=
=12, ,cosα=﹣
==﹣
, ,
∴sinα﹣cosα=故选:D.
【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.
12.(3分)(2018?娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[
]﹣[](k是正整数).例:f(3)=[
]
﹣[]=1.则下列结论错误的是( ) A.f(1)=0
B.f(k+4)=f(k) C.f(k+1)≥f(k)
D.f(k)=0或1
【分析】根据题意可以判断各个选项是否正确,从而可以解答本题. 【解答】解:f(1)=[
]﹣[]=0﹣0=0,故选项A正确;
第12页(共28页)
f(k+4)=[确;
]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正
C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;
D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确; 故选:C.
【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结论是否成立.
二、填空题(木大题共6小题,每小题3分,满分18分)
13.(3分)(2018?娄底)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为 1 .
【分析】直接利用反比例函数的性质结合系数k的几何意义得出答案. 【解答】解:∵点P是反比例函数y=图象上的一点,PA⊥x轴于点A, ∴△POA的面积为:AO?PA=xy=1. 故答案为:1.
【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出△POA的面积是解题关键.
14.(3分)(2018?娄底)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1 < S2+S3.(填“<”或“=”或“>”)
第13页(共28页)
【分析】过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,根据内心的定义可得PD=PE=PF,再根据三角形面积公式和三角形三边关系即可求解. 【解答】解:过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F, ∵P是△ABC的内心, ∴PD=PE=PF,
∵S1=AB?PD,S2=BC?PF,S3=AC?PE,AB<BC+AC, ∴S1<S2+S3. 故答案为:<.
【点评】考查了三角形的内切圆与内心,三角形面积和三角形三边关系,关键是由内心的定义得PD=PE=PF.
15.(3分)(2018?娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为
.
【分析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解. 【解答】解:画树状图如下:
第14页(共28页)
由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果, 所以选修地理和生物的概率为, 故答案为:.
【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
16.(3分)(2018?娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.
【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB,又S△ABC=AC?BF,将AC=AB代入即可求出BF. 【解答】解:在Rt△ADB与Rt△ADC中,
,
∴Rt△ADB≌Rt△ADC,
∴S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB, ∵S△ABC=AC?BF, ∴AC?BF=3AB, ∵AC=AB,
第15页(共28页)