类型4:图形问题中的方案设计
图形问题方案设计通常是先给出一个图形(可能是规则的也可能是不规则的),然后让你用直线或弧线将图形分成形状或面积相等的几部分,解决此类问题可借助对称的性质、角度的大小和面积公式等方法进行分割。【版权所有:21教育】
【例题】(2015?四川广安,第24题8分)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com
最大最全最精的教育资源网 www.xsjjyw.com
考点:作图—应用与设计作图.
分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可. 解答:根据分析,可得
.
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG, 每个最小的等腰直角三角形的面积是: (4÷2)×(4÷2)÷2 =2×2÷2 =2(cm)
(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO, 每个最小的等腰直角三角形的面积是:
2
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com
最大最全最精的教育资源网 www.xsjjyw.com
(4÷2)×(4÷2)÷2 =2×2÷2 =2(cm)
(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO, 每个最小的等腰直角三角形的面积是: (4÷2)×(4÷2)÷2 =2×2÷2 =2(cm)
(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI, 每个最小的等腰直角三角形的面积是: (4÷2)×(4÷2)÷2÷2 =2×2÷2÷2 =1(cm).
点评:(1)此题主要考查了作图﹣应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图.21·世纪*教育网 (2)此题还考查了三角形的面积的求法,要熟练掌握.
【变式练习】
(2014?四川广安,第24题8分)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a(a>1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值. 考点:作图—应用与设计作图.
分析:平行四边形ABCD的邻边长分别为1,a(a>1),剪三次后余下的四边形是菱形的4种情况画出示意图. 解答:①如图,a=4,
②如图,a
222
5=, 2全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com
最大最全最精的教育资源网 www.xsjjyw.com
③如图,a=
4, 3
④如图,a=
5, 3
点评:此题主要考查了图形的剪拼以及菱形的判定,根据已知行四边形ABCD将平行四边形分割是解题关键.
类型5:测量问题中的方案设计
解决此类的问题往往用到对称性质,借助轴对称或者中心对称等知识点构建最短路径问题,再结合要求选择所要求的方案。
【例题】(2015·南宁,第11题3分)如图6,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为( ). (A)4 (B)5 (C)6 (D)7
图6
考点:轴对称-最短路线问题;圆周角定理..
分析:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知
MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=
∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论. 解答:解:作N关于AB的对称点N′,连接MN′,NN′,ON′,ON. ∵N关于AB的对称点N′,
∴MN′与AB的交点P′即为△PMN周长的最小时的点,
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com
最大最全最精的教育资源网 www.xsjjyw.com
∵N是弧MB的中点, ∴∠A=∠NOB=∠MON=20°, ∴∠MON′=60°, ∴△MON′为等边三角形, ∴MN′=OM=4,
∴△PMN周长的最小值为4+1=5. 故选B.
点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.
【变式练习】
(2015?四川凉山州,第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点
P的坐标为 .
【答案】(【解析】
试题分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.
试题解析:连接ED,如图,
,
).
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com