该水经处理以后,水质应符合国家《污水综合排放标准》(GB18918-2002) 中的一级B标准.
3.处理程度计算
1.溶解性BOD5的去除率
活泩污泥处理系统处理水中的BOD5值是由残存的溶解性BOD5和非溶解性BOD5二者组成,而后者主要是以生物污泥的残屑为主体。活性污泥的净化功能,是去除溶解性BOD5。因此从活性污泥的净化功能来考虑,应将非溶解性的BOD5从处理水的总BOD5值中减去。
处理水中非溶解性BOD5值可用下列公式求得:(此公式仅适用于氧化沟)
BOD5f?0.7Ce?1.42(1?e?0.23?5)?0.7?20?1.42?(1?e?0.23?5)?13.6mg/L
? 处理水中溶解性BOD5为20-13.6=6.4mg/L ? 溶解性BOD5的去除率为:??2 .COD的去除率
160?6.4?100%?96%
160??3.SS的去除率
250?60?100%?76% 250??180?20?100%?88.89% 18035?15?100%?57.14% 354. NH3-N的去除率
?? 5. TP的去除率
6
??5?1?100%?80% 54.工艺流程的比较
城市污水处理厂的方案,既要考虑有效去除BOD5又要适当去除N,P故可采用SBR或氧化沟法,或A/A/O法,以及一体化反应池即三沟式氧化沟得改良设计. A SBR法 工艺流程:
污水 → 一级处理→ 曝气池 → 处理水 工作原理:
1)流入工序:废水注入,注满后进行反应,方式有单纯注水,曝气,缓速搅拌三种,
2)曝气反应工序:当污水注满后即开始曝气操作,这是最重要的工序,根据污水处理的目的,除P脱N应进行相应的处理工作。
3)沉淀工艺:使混合液泥水分离,相当于二沉池,
4)排放工序:排除曝气沉淀后产生的上清液,作为处理水排放,一直到最低水位,在反应器残留一部分活性污泥作为种泥。
5)待机工序:工处理水排放后,反应器处于停滞状态等待一个周期。 特点:
①大多数情况下,无设置调节池的心要。
②SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀。 ③通过对运行方式的调节,进行除磷脱氮反应。 ④自动化程度较高。
⑤得当时,处理效果优于连续式。 ⑥单方投资较少。
7
⑦占地规模大,处理水量较小。 B 厌氧池+氧化沟 工作流程:
污水→中格栅→提升泵房→细格栅→沉砂池→厌氧池→氧化沟 →二沉池→接触池→处理水排放 工作原理:
氧化沟一般呈环形沟渠状,污水在沟渠内作环形流动,利用独特的水力流动特点,在沟渠转弯处设曝气装置,在曝气池上方为厌氧池,下方则为好氧段,从而产生富氧区和缺氧区,可以进行硝化和反硝化作用,取得脱氮的效应,同时氧化沟法污泥龄较长,可以存活世代时间较长的微生物进行特别的反应,如除磷脱氮。
工作特点:
①在液态上,介于完全混合与推流之间,有利于活性污泥的适于生物凝聚作用。
②对水量水温的变化有较强的适应性,处理水量较大。
③污泥龄较长,一般长达15-30天,到以存活时间较长的微生物,如果运行得当,可进行除磷脱氮反应。
④污泥产量低,且多已达到稳定。 ⑤自动化程度较高,使于管理。 ⑥占地面积较大,运行费用低。
⑦脱氮效果还可以进一步提高,因为脱氮效果的好坏很大一部分决定于内循环,要提高脱氮效果势必要增加内循环量,而氧化沟的内循环量从政论上说可以不受限制,因而具有更大的脱氮能力。
⑧氧化沟法自问世以来,应用普遍,技术资料丰富。 C A/A/O法
8
优点:
①该工艺为最简单的同步脱氮除磷工艺 ,总的水力停留时间,总
产占地面积少于其它的工艺 。
②在厌氧的好氧交替运行条件下,丝状菌得不到大量增殖,无污
泥膨胀之虞,SVI值一般均小于100。
③污泥中含磷浓度高,具有很高的肥效。
④运行中勿需投药,两个A段只用轻缓搅拌,以不啬溶解氧浓度,
运行费低。 缺点:
①除磷效果难于再行提高,污泥增长有一定的限度,不易提高,
特别是当P/BOD值高时更是如此 。
②脱氮效果也难于进一步提高,内循环量一般以2Q为限,不宜太
高,否则增加运行费用。
③对沉淀池要保持一定的浓度的溶解氧,减少停留时间,防止产
生厌氧状态和污泥释放磷的现象出现,但溶解 浓度也不宜过高。以防止循环混合液对缺反应器的干扰。
D 一体化反应池(一体化氧化沟又称合建式氧化沟)
一体化氧化沟集曝气,沉淀,泥水分离和污泥回流功能为一体,无需建造单独得二沉池。基本运行方式大体分六个阶段(包括两个过程)。
阶段A:污水通过配水闸门进入第一沟,沟内出水堰能自动调节向上关闭,沟内转刷以低转速运转,仅维持沟内污泥悬浮状态下环流,所供氧量不足,此系统处于缺氧状态,反硝化菌将上阶段产生的硝态氮还原成氮气逸出。在这过程中,原生污水作为碳源进入第一沟,污泥污水混合液环流后进入第二
9
沟。第二沟内转刷在整个阶段均以高速运行,污水污泥混合液在沟内保持恒定环流,转刷所供氧量足以氧化有机物并使氨氮转化成硝态氮,处理后的污水与活性污泥一起进入第三沟。第三沟沟内转刷处于闲置状态,此时,第三沟仅用作沉淀池,使泥水分离,处理后的出水通过已降低的出水堰从第三沟排出。
阶段B:污水入流从第一沟调入第二沟,第一沟内的转刷开始高速运转。开始,沟内处于缺氧状态,随着供氧量增加,将逐步成为富氧状态。第二沟内处理过的污水与活性污泥一起进入第三沟,第三沟仍作为沉淀池,沉淀后的污水通过第三沟出水堰排出。
阶段C:第一沟转刷停止运转,开始泥水分离,需要设过渡段,约一小时,至该阶段末,分离过程结束。在C阶段,入流污水仍然进入第二沟,处理后污水仍然通过第三沟出水堰排出。
阶段D:污水入流从第二沟调至第三沟,第一沟出水堰开, 第三沟出水堰关停止出水。同时, 第三沟内转刷开始以低转速运转,污水污泥一起流入第二沟,在第二沟曝气后再流入第一沟。此时,第一沟作为沉淀池。阶段D与阶段A相类似,所不同的是反硝化作用发生在第三沟,处理后的污水通过第一沟已降低的出水堰排出。
阶段E:污水入流从第三沟转向第二沟,第三沟转刷开始高速运转,以保证该段末在沟内为硝化阶段,第一沟作为沉淀池,处理后污水通过该沟出水堰排出。阶段E与阶段B类似,所不同的是两个外沟功能相反。
10