????010?(2)T???101???2?2?,T?1AT???;
?2??1??4????4????1202?????225?515?1?3???(3)T??145??2??1?153??5?,T?1AT???1?;???52??10???0?33?????11?26?11?122???1?11??1??1(4)T??26122????,T?1AT??1?021?1???6122?????31???00122???10.(1)P??122??2?21??3??,P?1AP???0??;
??21?2?????3????122??333?(2)T??21???2??3??1?333?,TAT???0??. ??21?33?2??3???3??????23?3?11.A????45?3????44?2?.
??????. ?3??
1?2?3?112.T???3?2????3232?3131?3???1??2??1??,TAT??0?. 3??1????2??3??100???13.A??00?1?.
?0?10???14.A100??101?12?20???100??020?. ??5100(1?2)1??03??15.(1)?q??xn??xn?1??1?p?????y?; yp1?q??n??n?1???2q?(p?q)(1?p?q)n??xn?1(2)???. ?n??yn?2(p?q)?2p?(q?p)(1?p?q)?
习题6
?a1?1.证明:?0?0?0a200??a2??0?与?0?a3???00a300??0?合同. a1??2.写出下列二次型的矩阵表示: (1)f??4x1x2?2x1x3?2x2x3;
(2)f?x?4xy?4y?2xz?z?4yz;
(3)f?x1?x2?x3?x4?2x1x2?4x1x3?2x1x4?6x2x3?4x2x4.
3.设A是一个n阶对称矩阵.如果对任一个n维列向量x,都有xAx?0,试证A?0. 4.用拉格朗日配方法化下列二次型为标准形. (1)2x1x2?2x3x4;
T222222222(2)x1?2x2?2x1x2?2x1x3.
?5.用初等变换法化下列二次型为标准形.
(1)x1x2?4x1x3?6x2x3;
222(2)2x1?3x2?3x3?4x2x3.
6.用正交变换法化下列二次型为标准形.
222(1)x1?2x2?5x3?2x1x2?2x1x3?8x2x3;
(2) 2x1x2?2x1x3?2x1x4?2x2x3?2x2x4?2x3x4. 7.求一个正交变换把二次曲面的方程
3x2?4xy?5y2?4xz?5z2?10yz?1
化成标准方程.
8.化下列二次型为规范形.
222(1)x1?3x2?5x3?2x1x2?4x1x3; 222(2)2x1?x2?4x3?2x1x2?2x2x3.
9.证明:秩等于r的对称矩阵可以表成r个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:
222(1)f(x1,x2,x3)?x1?2x2?3x3?4x1x2?2x2x3;
2222(2)f(x1,x2,x3,x4)?x1?3x2?9x3?19x4?2x1x2?4x1x3?2x1x4?6x2x4?12x3x4.
11.t满足什么条件时,下列二次型是正定的:
222(1)f(x1,x2,x3)?x1?x2?5x3?2tx1x2?2x1x3?4x2x3; 222(2)f(x1,x2,x3)?x1?2x2?3x3?2tx1x2?2x2x3.
12.试证:如果A是正定矩阵,那么A的主子式全大于零. 13.试证:如果A是正定矩阵,那么 (1)kA(k?0)是正定矩阵; (2)A是正定矩阵.
14.试证:如果A,B是同阶正定矩阵,那么A?B也是正定矩阵.
?1?15.试证:实二次型f(x1,x2,?,xn)是半正定的充分必要条件是f(x1,x2,?,xn)的
正惯性指数等于它的秩.
?16.试证:实二次型f(x1,x2,?,xn)?xTAx是半正定的充分必要条件是A的特征值
全大于或等于零.
解答习题6
?0?21??x1?????2.(1)f?(x1,x2,x3)??201??x2?;
?110??x????3??121??x?????(2)f?(x,y,z)?242??y?;
?121??z??????1?1??11(3)f?(x1,x2,x3,x4)??23???1?22?1??x1????3?2??x2?. ???10x3???01??x4??22y1?y3?x1?22??22y1?y3?x2??2222224.(1)?,f?y1; ?y2?y3?y4?x?2y?2y24?322?22?x??y?y442??22?x1?y1?y2?y3?222x2?y2(2)?,f?y1. ?y2?y3?x??y?y23?33?x?y?y2?y31?16?2?225.(1)?x2?y1?; y2?y3,f?y12?y2?y36??5y2?y3?x3?26???x1?y1?1?(2)?x2?y2?2??1y2??x3?2?122. y3,f?2y12?5y2?y321y32?x1?y1?y2?2y3?2226.(1)?x2?y2?3y3,f?y1; ?y2?5y3?x3?y3?111?x?y?y?y42?12122?111?x??y?y?y4212?22?22222(2)?,f??3y1. ?y2?y3?y4??x3??1y?11y3?1y4?222?x111??4?2y1?2y3?2y4??x?4u?1?323v7.??y??1u?2v?1w,2u2?11v2??32321.
???z?132u?213v?2w??x51?y1??2y2?2y38.(1)??x1?2?2y2,f?y2221?y2?y3; ??x3??2y2?y3???x1?1y?1y?1y?212223(2)??x22222?2?2y2?2y3 f?y1?y2?y3.???x3?12y310.(1)负定;(2)正定. 11.(1)?0.8?t?0;(2)?15153?t?3.