即2x?y?z?0 四、(本题满分8分)
设z?xf?xy,ey?,其中f?u,v?具有二阶连续偏导数, 试求?z?x和?2z?x?y.
解: 令u?xy v?ey
?z?x?f?xyuf ?2zx?y?xfu?eyfv?xfu?xy?xfy?uu?efuv? 五、(本题满分8分)
计算二重积分??R2?x2?y2dxdy,其中D是由圆周
Dx2?y2?Ry ?R?0?所围成的闭区域.
?解: ??R2?x2?y2dxdy?2?02d?Rsin?R2??2?d?
D?0 ??2?3???R?d??102R3cos3?33433?R?9R 六、(本题满分8分)
计算对弧长的曲线积分?L?2x?3y?1?ds,
其中L是直线y?x?2从点??1,?3?到?1,?1?的直线段.解: ?1L?2x?3y?1?ds???1??2x?3?x?2??1??1?1dx ?2?1?1??x?7?dx?14 2
6
七、(本题满分9分)
计算曲面积分???x3dydz?y3dzdx?z3dxdy, ?其中?是球面x2?y2?z2?R2的外侧.
解:???x3dydz?y3dzdx?z3dxdy?3?x2?y2?z2?dv ????? ?3?2??R0d??0sin?d??r4dr?1205?R5 八、(本题满分9分)
求微分方程y???4y??4y?e2x的通解. 解: 先求y???4y??4y?0的通解
特征方程为r2?4r?4?0,特征根r1?r2?2, 所以对应齐次方程的通解为Y??C1?C2x?e2x 又设非齐次方程的特解为y??Ax2e2x, 则A?12,所以特解为y??12x2e2x
所以y???4y??4y?e2x的通解为: y?Y?y???C1?C2x?122x?e2xe2x 九、(本题满分9分)
??x4n?1求幂级数的收敛域及和函数.
n?14n?1x4n?5解: (1)limun?1?x?4n?5n??un?x??nlim??x4n?1?x4
4n?1 7
当x4?1时,即?1?x?1时原级数绝对收敛 当?x?1时,级数化为n?1,发散
?14n?1当x??1时,级数化为??1n?4n?1,发散
?1所以收敛域为??1,1?
2)设??x4n?1(的和函数为S?x?,则
n?14n?1S??x??(???x4n?1???4n?x4n?1)???14n?1n??1??x4nx?4n?1??n???11?x4又S?0??0,所以
S?x???xx401?x4dx??x?14ln1?x11?x?2arctanx x???1,1?
十、(本题满分11分)
已知函数u?u?x,y?有du?ax?yx?y?bx2?y2dx?x2?y2dy.(1)求a、b的值;
(2)计算I???ax?yx?y?bLx2?y2dx?x2?y2dy,
其中L为x2?y2?1取正向. 解: (1)?Px2?2axy??y?y2?, x2?y2?2?Qx2?2xy?2bx?y2?x??x2?y2?2 8
?P?Q要使,所以a?1,b?0 ??y?xx?yx?y2?(2)I???Lx2?y2dx?x2?y2dy???0d???2?
9