∴HM?12 又OH=AC?1
222?2?62??在Rt?OHM中,OH?1??. .................................................................(11分) ?2?2??2HM3?2?∴cos?OMH?......................................................................................(12OH362分)
19.(Ⅰ)因为a=?b 所以
1Sn?2n?1,Sn?2n?1?2. 2 当n?2时,an?Sn?Sn?1?(2n?1?2)?(2n?2)?2n ...........................................(2分) 当n?1时,a1?S1?2n1?1?2?2,满足上式
所以an?2 ..........................................................(4分) (Ⅱ)(ⅰ)?f(x)?(),f(bn?1)? ?()12x11f(bn?1)?
f(?3?bn)f(?3?bn)123?bn12bn?1?11()?3?bn2 ?12bn?1? ? bn?1?bn?3
bn?1-bn?3,又?b1?f(?1)?2 ??bn?是以2为首项3为公差的等差数列 ?bn?3n?1 .............................(8分) (ⅱ) cn? Tn?bn3n?1?n an22583n?43n?1????????n 2122232n?1212583n?43n?1?n?1 Tn?2?3?4?????n22222211(1-n?1)133333n?13n?1Tn?1?2?3?4?????n-n?1 ?1?3?42?n?1 ?122222221-2313n?11-n?1)?n?1 ?1?(222- 6 -
33n?13n?513n?1?2?3-??5-)? .......(12分)
2n?12n2n2n?12nyy1(x,y),由题可得.?? ..............................(4分) 20.(Ⅰ)解:Mx?2x?2431- ?Tn?2?(x2 ?y2?1
4x2(x??2) . .............................(6分 ) 所以点M的轨迹方程为?y2?14(Ⅱ)点O到直线AB的距离为定值 ,设A(x1,y1),B(x2,y2),
① 当直线AB的斜率不存在时,则?AOB为等腰直角三角形,不妨设直线OA:y?x
x225 ?y2?1,解得x?? 将y?x代入
54 所以点O到直线AB的距离为d?25; ............................(8分) 5x2② 当直线AB的斜率存在时,设直线AB的方程为y?kx?m与?y2?(1x??2)
4 联立消去y得(1?4k2)x2?8kmx?4m2?4?0
8km4m2?4............................(9分) x1?x2??xx?2,122 1?4k1?4k
因为OA?OB,所以x1x2?y1y2?0,x1x2?(kx1?m)(kx2?m)?0 即(1?k2)x1x2?km(x1?x2)?m2?0
4m2?48k2m22225m?4(1?k),........................(12??m?0 所以(1?k),整理得
1?4k21?4k22分 )
所以点O到直线AB的距离d?m1?k2?25 5综上可知点O到直线AB的距离为定值分 )
21.解:(Ⅰ)易知c又由令
25 ........................(135??5 ……………………(1分)
f?(x)?4x3?3ax2?2bx
f?(1)?0,得3a?2b??4.................................①……………………(2分)
f?(x)?0,得x(4x2?3ax?2b)?0
- 7 -
由
f?(2)?0,得3a?b?8?0.................................②……………………(3分)
432?4x?4x? 5 ……………………(4分) ??4 ?f(x)?x由①②得b?4,a(Ⅱ)若
, f(x)关于直线x?t对称(显然t?0)
则取点A(0,?5)关于直线对称的点A?(2t,?5)必在即
f(x)上,
f(2t)??5,得t2(t2?2t?1)?0 ……………………(6分) ?0
又t?t?1 ……………………(7分)
验证,满足
f(1?x)?f(1?x) ……………………(9分)
) f(t?x)?f(t?x),计算较繁琐;
4(也可直接证明
(Ⅲ)由(1)知,x即x又x4?4x3?4x2?5??2x2?5,
?4x3?4x2??2x2
?0为其一根,得x2?4x?(4??2)?0
???16?4(4??2)?4?2?0且x1x2?4??2?0
故A?{??R|??0且??2且???2} ……………………(10分)
?x1?x2?4222又?,得(x1?x2)?(x1?x2)?4x1x2?4?,
2xx?4???12?|x1?x2|?2|?|,故???A,2|?|?0且2|?|?4 , ……………………(11分)
?对?t?[?3,3],??A,使m2?tm?2?2|?|恒成立’
即只需?t?[?3,3],设g(t)m2?tm?2?0恒成立 ……………………(12分)
?mt?m2?2,t?[?3,3]
?g(3)?0?1?m?2?????无解 ?g(?3)?0??2?m??1即不存在满足题意的实数m. ……………………(14分)
- 8 -
- 9 -