初中数学组卷
一.填空题(共29小题) 1.如图,在△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;
②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为 _________ .
2.请举反例说明命题“对于任意实数x,x+5x+5的值总是整数”是假命题,你举的反例是x= _________ (写出一个x的值即可).
3.(2014?葫芦岛二模)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2013BC的平分线与∠A2013CD的平分线交于点A2014,得∠A2014CD,则∠A2014= _________ .
2
4.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 _________ . 5.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为 _________ (度).
6.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为 _________ . 7.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为 _________ .
1
8.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为 _________ .
9.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 _________ .
10.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是 _________ .
11.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为 _________ cm.
12.不等式3x﹣3m≤﹣2m的正整数解为1,2,3,4,则m的取值范围是 _________
13.已知不等式x+8>4x+m (m是常数)的解集是x<3,则m= _________ .
14.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为 _________ .
15.某次知识竞赛共有20道选择题,对于每一道题,答对得10分,打错或不答扣3分.若小刚希望总得分不少于70分,则他至少需答对 _________ 道题. 16.已知不等式组
的解集是2<x<3,分解因式:x﹣3x﹣2mn= _________ .
2
17.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换: (1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1); (2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1) 按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= _________ . 18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为 _________ .
2
19.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n= _________ .
20.如图,直线y=
x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则
点B′的坐标是 _________ .
21.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点共有 _________ 个.
22.使函数y=
+
有意义的自变量x的取值范围是 _________ .
23.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行 _________ 米.
24.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是 _________ .
25.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第 _________ 象限.
26.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 _________ .
27.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是 _________ .
3
28.图中直线是由直线l向上平移1个单位,向左平移2个单位得到的,则直线l对应的一次函数关系式为 _________ .
29.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是 _________ .
二.解答题(共1小题)
30.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.
(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1. ①求点B的坐标及k的值; ②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于 _________ ; (2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.
4
2015年01月21日汪峰的初中数学组卷
参考答案与试题解析
一.填空题(共29小题) 1.(2014?河南)如图,在△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;
②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为 105° .
考点: 作图—基本作图;线段垂直平分线的性质. 分析: 首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可. 解答: 解:由题中作图方法知道MN为线段BC的垂直平分线, ∴CD=BD, ∵∠B=25°, ∴∠DCB=∠B=25°, ∴∠ADC=50°, ∵CD=AC, ∴∠A=∠ADC=50°, ∴∠ACD=80°, ∴∠ACB=∠ACD+∠BCD=80°+25°=105°, 故答案为:
5