点评: 105°. 本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法. 2
2.(2014?温州)请举反例说明命题“对于任意实数x,x+5x+5的值总是整数”是假命题,你举的反例是x= 出一个x的值即可). 考点: 命题与定理. (写专题: 分析: 开放型. 能使得x+5x+5的值不是整数的任意实数均可. 2解答: 解:当x=时,原式=++5=7,不是整数. 故答案为:. 点评: 本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例. 3.(2014?葫芦岛二模)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2013BC的平分线与∠A2013CD的平分线交于点A2014,得∠A2014CD,则∠A2014= ° .
6
考点: 三角形内角和定理;三角形的外角性质. 专题: 规律型. 分析: 利用角平分线的性质、三角形外角性质,易证∠A1=∠A,进而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2014=∠A=°. 解答: 解:解:∵A1B平分∠ABC,A1C平分∠ACD, ∴∠A1BC=∠ABC,∠A1CA=∠ACD, ∵∠A1CD=∠A1+∠A1BC, 即∠ACD=∠A1 7
+∠ABC, ∴∠A1=(∠ACD﹣∠ABC), ∵∠A+∠ABC=∠ACD, ∴∠A=∠ACD﹣∠ABC, ∴∠A1=∠A, ∠A2=∠A1=∠A,…, 以此类推可知∠A2014=∠A=°. 故答案为:°. 点评: 本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律. 4.(2014?呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 63°或27° . 考点: 等腰三角形的性质. 专题: 分类讨论. 分析: 分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它
8
的底角的度数. 解答: 解:在三角形ABC中,设AB=AC,BD⊥AC于D. ①若是锐角三角形,∠A=90°﹣36°=54°, 底角=(180°﹣54°)÷2=63°; ②若三角形是钝角三角形,∠BAC=36°+90°=126°, 此时底角=(180°﹣126°)÷2=27°. 所以等腰三角形底角的度数是63°或27°. 故答案为:63°或27°. 点评: 此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理. 9
5.(2014?天津)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为 45 (度).
考点: 等腰三角形的性质. 专题: 几何图形问题. 分析: 设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小. 解答: 解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y. ∵AE=AC, ∴∠ACE=∠AEC=x+y, ∵BD=BC, ∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣
10