四、附加题(本大题共2小题,共20分) 25.(10分)(2014?宿迁)如图,已知△BAD和△BCE均为等腰直角三角形,
∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N. (1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
26.(10分)(2014?宿迁)如图,已知抛物线y=ax+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D. (1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4); ①求此抛物线的表达式与点D的坐标;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,求证:无论b,c取何值,点D均为顶点,求出该定点坐标.
2