1an?1??2n?13??11nan??23?a1?
1????an??2n?是等比数列3??
211?,q??1?an?[2n?(?1)n]333(3分)
(2)Sn=a1+a2+……+an
112(1?2n)(?1)(1?(?1)n)2n2n?[(2?2???2)?((?1)?(?1)???(?1))]?[?]331?21?1?2n?12?n偶1n?1?1?(?1)n??33?[2?2?]??n?132?2?1n奇??33(6分)
(3)bn=an·an+1
11bn?[2n?(?1)n][2n?1?(?1)n?1]?[22n?1?(?2)n?1]?bn?tsn>099
12n?11n?1(?1)n?1n?[2?(?2)?1]?t?[2?2?]?0932∴当n为奇数时
12n?1nt1[2?2?1]?(2n?1?1)?0?t?(2n?1)对?n?奇数都成立?t<1933
(9分)
当n为偶数时[来源:www.shulihua.net]
12n?1t12t[2?2n?1]?(2n?1?2)?0?[22n?1?2n?1]?(2n?1)?0939313t?(2n?1?1)对?n?偶数都成立?t?62(12分)
综上所述,t的取值范围为t<1 (13分)
f(x)?21.已知函数
12x?x?(x?1)ln(x?1)2
(1)判断f(x)的单调性;
x,x(x?x2),求证??k(x?1)(2)记?(x)?f(x?1)若函数?(x)有两个零点121??(
x1?x2)?02
解:(1)?原函数定义域为分)
记g(x)?x?ln(x?1)
??1,???,f?(x)?x?ln(x?1), (2
g?(x)?1?分)
1x?x?1x?1, (3
??1,0?递减, ?当x?(?1,0)时,g(x)?0,g(x)在
?0,???递增, ?当x?(0,??)时,g(x)?0,g(x)在
?x???1,???,g(x)?0分)
(2)由(1)可知?(x)?x?1?lnx?k(x?1),由题意:
,即当
?x???1,???,f?(x)?0?f(x),
在
??1,???递增 (6
x1?1?lnx1?k(x1?1)?0,
x1?k(x1?x2)x2,即有
x2?1?lnx2?k(x2?1)?0,两式相减得:k?1?x1ln1x1?x2x2,
x1?x2?lnx1?x221??()?1?k???(x)?1??k2x1?x2x又因为,所以
(9分)
x12?ln1?x1?x2x2?x1 x 2
现考察
x1?1)x2(x1?x2)xx2ln1??ln1?x1x2x1?x2x2?1x22(2t?(tl?nt?11),令
x1?t(?0t?x21),
设
?(t?)(t?1)2?t(0???(t)?1)2?0t??0,1?t(t?1),则,所以?(t)在递增,所以
?(t)??(1)?0, (11分) ln即
x12(x1?x2)??0x?x2?0, x2x1?x2,又因为1??(所以
x1?x2x12)?ln1??02x1?x2x2x1?x2 (13分)