?此直线的函数表达式为y??3x?3.
设点P的坐标为(x,?3x?3),并代入y??x2?2x?3,得x?5x?0. 解得x1?5,x2?0(不合题意,舍去).
2?x?5,y??12. ?12). ?点P的坐标为(5,此时,锐角?PCO??ACO. 又?二次函数的对称轴为x?1,
x C · C? 3). ?点C关于对称轴对称的点C?的坐标为(2,A O E B ?当xp?5时,锐角?PCO??ACO;
当xp?5时,锐角?PCO??ACO;
P x?1 当2?xp?5时,锐角?PCO??ACO.
(2008中考)28.解:(1)如图,过点B作BD?OA于点D. 在Rt△ABD中,
y P2 ?AB?35,sin?OAB?5, 55?3. 5?BD?AB?sin?OAB?35?又由勾股定理, 得AD?B P3 AB?BD?(35)2?32?6.
22E O C D P1 A F ?OD?OA?AD?10?6?4. ?点B在第一象限内,
3). ?点B的坐标为(4,?3). ················ 2分 ?点B关于x轴对称的点C的坐标为(4,0)C(4,?3),A(10,0)三点的抛物线的函数表达式为 设经过O(0,,y?ax2?bx(a?0).
1?a?,??16a?4b??3?8??由?
100a?10b?05??b??.??415?经过O,C,A三点的抛物线的函数表达式为y?x2?x. ········· 2分
84(2)假设在(1)中的抛物线上存在点P,使以P,O,C,A为顶点的四边形为梯形.
15?3)不是抛物线y?x2?的顶点, ①?点C(4,84?过点C作直线OA的平行线与抛物线交于点P1.
则直线CP1的函数表达式为y??3. 对于y?125x?x,令y??3?x?4或x?6. 84?x1?4,?x2?6, ????y1??3;?y2??3.?3),?P而点C(4,?3). 1(6,在四边形P1AOC中,CP1∥OA,显然CP1?OA.
······················· 1分 ?3)是符合要求的点. ?点P1(6,②若AP2∥CO.设直线CO的函数表达式为y?k1x.
?3)代入,得4k1??3.?k1??将点C(4,3. 43?直线CO的函数表达式为y??x.
43于是可设直线AP2的函数表达式为y??x?b1.
43150)代入,得??10?b1?0.?b1?. 将点A(10,42315?直线AP2的函数表达式为y??x?.
42?由??y??315?4x?2?x2?4x?60?0,即(x?10)(x?6)?0. ??y?1x2?8?54x???x1?10,?x2??6,?y1?0;? ?y2?12;而点A(10,0),?P2(?612),.
过点P2作P2E?x轴于点E,则P2E?12.
在Rt△AP222E中,由勾股定理,得AP2?P2E?AE?122?162?20.
而CO?OB?5.
?在四边形P2OCA中,AP2∥CO,但AP2?CO.
?点P2(?612),是符合要求的点. ······················③若OP3∥CA.设直线CA的函数表达式为y?k2x?b2.
将点A(10,,0)C(4,?3)代入,得??10kb?12?2?0?k2?,kb??2
?42?2??3??b2??5.?直线CA的函数表达式为y?12x?5. ?直线OP13的函数表达式为y?2x.
?由??y?1?2x?x2?14x?0,即x(x?14)?0. ??y?18x2?5?4x???x1?0,?x2?14,; ?y?1?0?y2?7.而点O(0,0),?P3(14,7). 过点P3作P3F?x轴于点F,则P3F?7.
在Rt△OP3F中,由勾股定理,得
分 1 OP3?P?72?142?75. 3F?OF22而CA?AB?35.
中,OP?在四边形POCA33∥CA,但OP3?CA.
,7)是符合要求的点. ······················· 1分 ?点P3(14综上可知,在(1)中的抛物线上存在点P,?3),P,,P,7), 1(62(?612)3(14使以P,O,C,A为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.
①当抛物线开口向上时,则此抛物线与y轴的负半轴交于点N. 可设抛物线的函数表达式为y?a(x?2k)(x?5k)(a?0).
y 3?492?即y?ax2?3akx?10ak2?a?x?k??ak.
24??如图,过点M作MG?x轴于点G.
2Q O N G R x ?3??Q(?2k,,0)R(5k,,0)G?k,0?,
?2?49?3?N(0,?10ak2),M?k,?ak2?,
4?2??|QO|?2k,|QR|?7k,|OG|?3k, 27492|QG|?k,|ON|?10ak2,|MG|?ak.
2411?S△QNR??QR?ON??7k?10ak2?35ak3.
22M S△QNM?S△QNO?S梯形ONMG?S△QMG
111??QO?ON?(ON?GM)?OG??QG?GM 22211?491749?3??2k?10ak2???10ak2?ak2??k??k?ak2 22?4224?21?4949?21??20?15?3??7??ak3?ak3. 2?88?4?21?················ 2分 ?S△QNM:S△QNR??ak3?:(35ak3)?3:20.
?4?②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N.
同理,可得S△QNM:S△QNR?3:20. ····················· 1分 综上可知,S△QNM:S△QNR的值为3:20. ··················· 1分
(2009中考)