为刻画现实世界中不等关系的数学工具,作为描述优化问题的一种数学模型,而不再把重点放在纯理论的数学探究上。
4. 教学内容分析
☆ 章头图
本章的章头图是一幅山峦重叠起伏的壮观画面,将学生带入“横看成岭侧成峰,远近高低各不同”的大自然中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望。
☆3.1不等关系与不等式
这一节的要求和原教材有很大的不同,原教材作为研究不等式的理论基础,所以对它们归结为几个定理和推论,并给出了证明。而现在把所有的定理和推论整理为不等式的八大性质,并作一些简要的说明,强调这些关于不等式的事实和性质是解决不等式问题的依据。建议在教学中不要对这些性质的证明作过多的纠缠,而应该在说明这些性质的合理性上举例说明,引导学生进一步挖掘一些感兴趣的和富有时代感的素材,通过分析其中的基本数量关系,以加深学生对“不等关系是客观事物的基本数量关系”的认识。也可以类比等式的基本性质,对一些不等式的推断作一些分析验证,通过类比,使学生认识不等式与等式性质之间的相同点与不同点。
☆3.2 一元二次不等式及其解法
在大纲教材的函数部分,借助于二次函数安排了二次不等式的内容。这样安排已为广大教师所接受,其好处也是多方面的。课标教材则把二次不等式的内容移至“必修5”,在“必修1”的函数内容中,强调函数“是描述现实世界变量之间的依赖关系的数学模型”,把重点放在函数概念的本质的理解、函数性质讨论以及函数的实际应用上,其用意固然是为了防止教师在集合的学习与函数概念的教学中,在求解定义域、值域等“细枝末节”的问题上对学生进行大量人为的、繁琐的训练,但这种“釜底抽薪”的做法似乎更多的是因为受到各个模块课时的限制而造成的无奈,许多首批参与实验的教师也对此提出质疑,认为这样处理值得商榷。
一元二次不等式解集的求法对于高一学生而言并不会感到困难,但理解二次函数、一元二次方程与一元二次不等式解集之间的关系,则要经历观察、思考、探究的过程。课标教材着眼于让学生体验知识形成过程的精心设计值得我们在教学中细心体味,无论是一元二次不等式模型的建立、解法的归纳,还是以填空的形式让学生尝试设计求解一般一元二次不等式过程的程序框图,都为学生的思维活动留足了空间。这种从特殊到一般的处理方式符合学生的认知规律,有助于学生了解知识的形成过
程和来龙去脉,加深对知识的理解,以及对隐藏在知识发生过程中的数学思想方法的领悟。另外,教学中要控制不等式的难度,一般不要超出教科书的要求,一元二次不等式的求解只要达到基本要求即可,要淡化解不等式技巧性要求,要注意加强与函数、方程的联系,积极渗透算法思想,突出不等式的实际背景及其应用,有关内容将在选修系列4—5中作进一步讨论。
☆3. 3 二元一次不等式(组)与简单的线性规划问题
不等式作为用来刻划不等关系的有效工具,有着丰富的现实背景,不等式也是刻划区域的重要工具,刻划区域是解决线性规划问题的一个基本步骤,在现实生产、生活中,经常遇到的资源利用、人力调配、生产安排等问题常常可归结为二元线性规划问题。线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题。教学中要注意从实际问题引入,着眼于不等式与实际问题的联系,使学生明确数学问题源于生活且用于生活。由于线性规划属于多元条件极值问题,对高一学生有一定难度,因此教学中应当强调借助几何直观解决一些简单的线性规划问题,引导学生体会线性规划的基本思想,在其它方面的一些应用不宜作过多展开。另外,直线方程是平面解析几何内容,根据《指导意见》先上模块5、后上模块2的顺序,学生对直线的斜率、截距、平行直线系等概念尚不清晰,无疑这也将增加学习线性规划的难度,有人提出“让线性规划回去”,也是有一定道理的。
在本节内容的后面,教材安排了阅读材料“错在哪儿”和信息技术应用“用Excel解线性规划问
题举例”。前者提出的问题既有思考性又有挑战性,对于同一道习题得到不同答案的类似问题情境学生常常经历,也常常给学生带来困惑,引导学生辨析纠错,有利于培养学生思维的深刻性和反思意识。后者借助计算机为研究二元一次不等式组的解集表示的平面区域和简单的线性规划问题提供试验探索平台,从动手实践、观察猜想中发现规律,且有较强的操作性,可指导学生课外完成。
☆3.4基本不等式:
ab?a?b 2本节主要内容是使学生了解基本不等式的代数、几何背景及基本不等式的证明,通过基本不等式的实际应用,感受数学的应用价值,重点是应用数形结合的思想理解基本不等式并从不同的角度探究其证明过程。根据课标立足基础、螺旋上升的教学要求,教学时要突出用基本不等式解决问题的基本方法和基本的应用,如运用基本不等式可解决周长、面积、造价的最大(小)值问题等。对不等式证明的教学不必加深,基本不等式仅限于二元均值不等式,不必推广到三个以上变量的情形,有关内容会在后续学习的选修1-2和选修2-2的推理与证明、选修4-5中的不等式选讲中得到加强。
教学中的几点建议
1.关注数学情境的建立,重视反映数学的应用价值
要关注数学情境的建立,充分挖掘现实世界和实际生活中有关数学实例,解三角形、数列和不等式三章内容有着丰富的实际背景,除了教科书中的实例还有很多很好的相关的素材,教学过程中应该充分给予挖掘,力求问题的引入能够反映一定的生活背景,激发学生学习数学的兴趣,并体会数学的应用价值。
在第一章“解三角形”中,引言就是从一个测量问题引入,在解三角形的过程中不断与一些实际测量问题相联系,如怎样航行途中测出海上两个岛屿之间的距离?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?怎样测出海上航行的轮船的航速和航向?等等。
第二章“数列”应自始至终贯彻“数列作为一种特殊函数,是反映自然规律的基本数学模型”的思想,创造性地发掘日常生活中的实际问题,深入探讨教科书中大量实例,如存款利息、出租车收费、校园网问题、希尔宾斯基三角形、斐波那契数列、放射性物质的衰变、诺贝尔奖金发放金额问题、商场计算机销售问题、九连环的智力游戏、购房中的数学等等。使学生充分感受到数列是反映现实生活的数学模型,体会数学是来源于现实生活,并应用于现实生活的。
第三章“不等式”可从日常生活中经常用到的“长与短、”“大与小”、“多与少”、“远与近”等实际情境中引入不等关系,如通过学生感兴趣的上网问题引入一元二次不等式的有关概念,从中认识到学习不等关系及不等式的必要性。从银行贷款中的资金分配问题中引入二元一次不等式组的数学模型,从现实生产、生活中,经常遇到的资源利用、人力调配、生产安排等问题中引入二元线性规划问题。再如,结合北京召开的第24届国际数学家大会的会标,联系我国古代数学家赵爽的弦图,紧紧抓住弦图中相关面积间存在的数量关系引入不等式a?b?2ab。 2.重视各部分内容之间的联系
数学各部分的内容构成一个有机的整体,教师应充分注意这一点,并在教学中力求体现这种联系。例如,在第一章中,对于正弦定理和余弦定理,应注意它们与已经学习的关于三角形的定性研究的结论的联系。余弦定理的证明使用了向量的方法,不仅使定理的证明简洁而明快,而且也能够体现向量及其运算的作用。第二章则可有意识的关注数列与函数的关系,强调数列作为一种特殊函数的意义,有条件的话也可注意联系算法和微积分思想,揭示“离散”和“连续”之间的关系。第三章则强调不等式与函数、方程的关系,在一元二次不等式的解法和简单的线性规划问题中,始终注意数与形的联系,通过对不等式、函数与方程关系的理解来解决所面临的不等式的问题。另外,在各章习题、探究
22
性问题和阅读材料安排中也应注意各部分内容的联系。 3.重视基本数学思想方法的教学
要重视基本的数学思想方法的教学,如函数的思想,优化的思想,以及类比、归纳等合情推理的方法。如第一章“解三角形”对于正弦定理和余弦定理的研究,都是从对于初中数学中对于三角形的定性研究进一步深化为定量研究的角度去展开的,其中蕴含着函数思想。正弦定理的证明从直角三角形的情形出发,体现从特殊到一般的归纳过程,从一定程度上也反映了类比的思想。第二章不仅贯彻数列是特殊函数的观点,而且不断在等差数列和等比数列之间进行类比,从求1+2+3+?+100的高斯算法出发,将这种规律性推广到一般等差数列,从而获得一般等差数列的求和思路,这又是归纳的生动案例。在第三章中,对于二元一次不等式与“平面区域”的关系,体现了从特殊到一般的归纳思想,线性规划的内容则突出体现了优化的思想。
同时,教学中要有意识地体现“数形结合”的思想,如三角形解的个数问题,数列与相应函数的联系,不等式表示的几何意义,特别是线性规划,从问题的提出到解决,都直接依赖于“平面区域”。 4.适当使用现代信息技术
现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响, 高中数学课程应提倡实现信息技术与课程内容的有机整合(如把算法融入到数学课程的各个相关部分),整合的基本原则是有利于学生认识数学的本质。教学中应充分的考虑现代信息技术的教育价值,并在相部分内容中适当体现,教科书在第二章和第三章,分别设计了“信息技术应用”专题,介绍2的近似计算和利用EXCEL解决线性规划问题等,鼓励学生运用计算机、计算器等进行探索和发现。具体来说,在解三角形的过程中可以利用计算器简化一些繁杂的计算,在数列一章的学习中,可以利用相关的计算机软件来探索规律,在不等式一章中可以利用图形计算器或有关计算机软件来寻求不等式的解,可以用Excel来解简单的线性规划问题。 5.要充分展现数学文化
数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力。数学不仅具有重要的科学价值,同时还具有丰富的人文价值,本模块教材为我们提供了许多可供展现数学文化的素材,天文地理、数学名著、考古发现、趣闻轶事......,无一不散发出浓厚的文化气息,教师要挖掘教材中的人文因素,既注重数学的科学价值,也不忽视对数学人文精神的提升,有意识地建设数学课堂文化,充实学生人文内涵,利用教师人格魅力,提升学生人文品位。
如在“等差数列”复习课中,我就引用了如下数学史料:
①今有金鉴,长五尺,斩本一尺,重四斤;斩末一尺,重两斤。问次一尺各重几何?
②今有五人分五钱,令上二人与下三人相等,问各得几何?
③今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何? ④今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十日织讫。问织几何?
以上四题出自我国古代数学名著《九章算术》(1世纪)、《张丘建算经》(5世纪),学生在理解题意后可通过等差数列的通项公式、前n项和公式便捷获解。我们在教学中,要很好地发挥数学科学本身所固有的人文价值功能,挖掘数学中的文化气息,欣赏数学的美,培养学生的创新个性,在数学新课程理念指导下,大力弘扬人文精神,积极介绍数学文化,做到科学与人文精神的有机整合。帮助学生“初步了解数学科学与人类社会之间的相互作用,体会数学科学价值、应用价值、人文价值,开阔视野,寻求数学进步的历史轨迹,激发对于数学创新原动力的认识,受到优秀文化的熏陶,领会数学的美学价值,从而提高自身的文化素养和创新意识”。