离散数学试题及答案(3)

2018-12-29 17:50

<5,4>,<5,5>}

八、设R1是A上的等价关系,R2是B上的等价关系,A≠?且B≠?。关系R满足:<>∈R?∈R1且∈R2,证明R是A×B上的等价关系(10分)。

证明 对任意的∈A×B,由R1是A上的等价关系可得∈R1,由R2是B上的等价关系可得∈R2。再由R的定义,有<>∈R,所以R是自反的。

对任意的∈A×B,若R,则∈R1且∈R2。由R1对称得∈R1,由R2对称得∈R2。再由R的定义,有<>∈R,即R,所以R是对称的。

对任意的∈A×B,若RR,则∈R1且∈R2,∈R1且∈R2。由∈R1、∈R1及R1的传递性得∈R1,由∈R2、∈R2及R2的传递性得∈R1。再由R的定义,有<>∈R,即R,所以R是传递的。

综上可得,R是A×B上的等价关系。

九、设f:A?B,g:B?C,h:C?A,证明:如果h?g?f=IA,f?h?g=IB,g?f?h=IC,则f、g、h均为双射,并求出f-1、g-1和h-1(10分)。

解 因IA恒等函数,由h?g?f=IA可得f是单射,h是满射;因IB恒等函数,由f?h?g=IB可得g是单射,f是满射;因IC恒等函数,

由g?f?h=IC可得h是单射,g是满射。从而f、g、h均为双射。

由h?g?f=IA,得f-1=h?g;由f?h?g=IB,得g-1=f?h;由g?f?h=IC,得h-1=g?f。


离散数学试题及答案(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:投标书

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: