金属材料学基础理论 - 图文(4)

2019-01-05 12:52

在自然界中,常常可以看到食盐,方解石的单晶体。

4.5 晶体的缺陷

金属晶体的缺陷依照其几何形状,分为点缺陷、线缺陷和面缺陷。 4.5.1 点缺陷

点缺陷:指晶格中三维尺寸都较小的点状缺陷,主要包括晶格空位、间隙原子和异质原子。

4.5.2 线缺陷

线缺陷:又称位错,是指晶体中一列或若干列原子发生有规律的错排现象。位错有两种类型,最简单的是刃形位错。

位错的存在对金属的性能有很大影响,随着位错数目的增加,金属强度先降低后增加,所以金属晶体中不含位错或含有大量位错均能使强度提高。

16 / 104

4.5.3 面缺陷

面缺陷:晶体中二维尺寸较大、一维尺寸较小的呈面状分布的缺陷,如晶界、亚晶界等。在多晶体中相临晶粒的位向不同,在交界的地方原子排列不可能很规则,于是产生一层“过渡层”。相邻晶粒的位向差如果小于15度,称作“小角度晶界”,可以看作由许多纵向排列的同号刃型位错组成;当位向差大于15度时,称作大角度晶界,随着位向差的增加,晶界的厚度也增加。在实际金属中多数晶界是大角度晶界。

4.6 纯金属的结晶

结晶:金属材料自液态凝固的过程。 4.6.1 结晶的条件

纯金属在结晶时都有一固定的转变温度,称为熔点,或平衡结晶温度。金属的温度高于熔点时,金属应以液体状态存在;低于熔点时,金属则以固体状态存在。在平衡结晶温度时,液体与固体同时存在,这时液体的结晶速度与固体的熔化速度相同,是动态平衡状态。

液态金属冷却到镕点时是不能结晶成晶体的,只有冷到低于熔点的温度时,即有一定的“过冷度”时才能结晶。 4.6.2 结晶的过程

金属的结晶过程一般包括两个过程,即形核过程和晶核长大过程。

形核过程:是当温度降到结晶温度时,熔液中开始出现时聚时散的类似晶体结构的小集团,当小集团达到一定临界值时,逐渐稳定,这种最初形成的小晶体被称为晶核。熔液中晶核数目的多少与过冷度、熔液中含高熔点杂质数目等因素有关,把单位时间内单位体积中所

17 / 104

产生晶核数用形核速率(简称形核率)来表示。

晶核长大过程:是晶核逐渐长大的过程,晶核的长大过程具有方向性,一般沿过冷度大的方向生长,这种生长方式类似树枝的生长,被称为树枝状长大,直到液相消耗完毕。晶核长大的速率称为长大率,用单位时间内晶体表面向前推进的线速度表示。

4.6.3 影响晶粒大小的因素

金属晶粒的大小是影响金属性能的重要因素。

晶粒大小与常温力学性能的关系为:晶粒越细小,金属的强度、塑性、韧性越高。反之晶粒越粗大,金属的力学性能越差。

制备细晶粒材料的措施一般为在结晶过程提高形核率和抑制长大率。形核率和长大率的影响因素主要有以下三个方面: (1) 过冷度影响

形核率N和长大率G与过冷度Δt关系,一般随着过冷度的增加,形核率和长大率先增加后下降。

(2) 难熔杂质的影响

高熔点杂质的加入对细化晶粒的作用也非常明显,由于液态金属结晶时可以附着在未全部熔解的高熔点杂质的颗粒表面,所以加入高熔点杂质能提高形核率。 (3) 金属流动与振动

在金属结晶时如果增加液体流速或给以机械振动、超声波振动,都将达到增加形核率或抑制长大率的效果。

4.7 固态金属的同素异晶转变

18 / 104

多数金属结晶后晶格类型保持不变,但有些金属如铁、锰、钴、钛、锡等在固态下晶格类型会随温度的变化而发生改变,由一种晶格向另一种晶格转变,金属在固态下发生晶格变化的过程称为同素异晶转变。

纯铁的同素异晶转变在实际生产中有重要意义,正是由于纯铁能够发生同素异晶转变,生产中才有可能用热处理的方法来改变钢的组织和性能。 4.8 金属的塑性变形与再结晶 4.8.1 单晶体的塑性变形

晶体塑性变形的主要形式是滑移和孪生。 (1) 滑移

如果对单晶体锌做拉伸试验,但单晶锌被拉长后,发现锌的表面出现倾斜的近乎平行的细线,称为滑移线。在锌晶体的内部,发生了一部分晶体相对于另一部分晶体的相对滑动,即滑移。

对滑移后的晶体进行x射线分析表明,晶体发生相对移动后仍然是完整的晶体,且晶格位向不变,滑动的距离是晶格常数的整数倍。这种由整个晶体沿着一个滑移的平面发生的整体滑动,称为“刚性滑移”。发生滑移的晶面,叫做滑移面。 (2) 孪生

孪生是晶体的另一种塑性变形方式。在切应力作用下,晶体的一部分沿一定的晶面(孪晶面)和晶向(孪晶方向)相对于另一部分所发生的切变称为孪生。与滑移变形相比,孪生变形很少发生。因为孪生所需要的剪切应力很大,孪生变形往往只在低温的体心六方晶格金属中发生,或在滑核系很少的密排六方晶格金属中发生,或受到冲击变形的金属中发生。 4.8.2 多晶体的塑性变形

多晶体塑性变形时,每个晶粒的塑性变形与单晶体塑性变形基本相同,但由于晶界的作用及相邻晶粒之间位向不同,多晶体的塑性变形与单晶体相比又有所不同。 (1) 晶界的影响

晶界是相邻两个晶粒的边界,晶界上的原子排列是无规则的,金属中的杂质原于往往存在其间,这对于位错的运动形成很大阻力。

用只有两个晶粒的试样进行拉伸试验,变形后试样出现了所谓“竹节现象”。这说明晶界附近晶体的塑变抗力很大。由此可以推断,多晶体金属的晶粒越细小(单位体积内晶粒数越多)时,该晶体的塑变抗力越大,即强度越高。 (2) 位向差的作用

19 / 104

外力的切应力分量在外力呈45°角度时最大。因此,晶体中与外力方向接近45°的滑移系最容易发生滑移,而接近0°与90°时,切应力分量最小,晶体不易发生滑移。由于多晶体金属中相邻晶粒位向不同,当一个晶粒的位向接近45°发生滑移时,必然受到相邻晶粒的牵制作用,相邻晶粒间的位向差越大时,牵制作用越大,从而增加了塑变抗力,使强度提高。

金属的晶粒越细时,其强度越高。细晶粒的金属不仅强度高,塑性也好,这是应为多晶体在应力作用下,塑性变形分散在更多的晶粒之中,晶粒越细时,多晶体各处的塑性变形越均匀。相反,多晶体的晶粒很措大时,某些大晶粒的位向不利于滑移变形,则在较大的体积内牵制塑性变形,使塑性交形不均匀。

在实际生产中,希望金属零件的晶粒越细越好。在电力设备中,有些重要零件的晶粒度,被限定在一定级别之内,尤其是承受冲击的构件,如碎煤机的锤头和锤扦,细晶粒金属的强度高、塑性好,则冲击韧性也高,能够承受反复的冲击而不易产生疲劳损坏。 4.8.3 回复与再结晶

形变后的金属加热时,将发生一系列的组织和性能的变化,变化的主要形式是回复与再结晶。 (1) 回复

经过塑性变形的金属在加热温度较低时,金属组织基本不变,硬化现象仍然保留,但内应力大大消除,这种现象称为回复。 (2) 再结晶

塑性变形后的金属在较低温度下加热时,虽经回复使内应力大部分消除,但显微组织和结构没有明显的改变,形变储存能未能完全释放,金属组织仍处于不稳定状态。如继续提高加热温度,使金属原子的扩散能力增加,这种高能不稳定状态将消除,晶粒拉长和碎化趋于消失,金属的组织、性能完全恢复到变形前的状态。这种变化实质上是一个重新形核、长大的过程,称为再结晶。再结晶后的金属组织与形变前的退火组织相同,加工硬化现象完全消失,位错密度也降至变形前的状态。 (3) 再结品温度与晶粒长大 再结晶过程不是相变。

再结晶温度主要取决于金属的预变形程度。没有产生塑性变形的金属加热时不会出现再结晶的现象。金属的预变形度越大,其形变储存能越多,加热时再结晶的倾向越大,所需的再结晶温度越低。当形变量大到一定程度后,再结晶温度趋于某一固定值,这一温度值称作Ta,即最低再结晶温度。

20 / 104


金属材料学基础理论 - 图文(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:浙江省2003年7月高等教育自学考试

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: