34.【参考答案及评分标准】
由 由
得 由
35.【参考答案及评分标准】
(1)求虹吸管的流量:列进、出口水池水面的伯努利方程:
把已知参数代人:求得v=vA=1.59m/s (1分) 所以
(2)低压强点及其真空度
最低压强应是虹吸管内的C点 (见图)
列进水池水面及C断面的伯努利方程:
一.简答题(30分) 1.粘性及粘性的表示方法
产生阻抗流体层间相对运动的内摩擦力的这种流体的性质。 三种表示方法:绝对粘度、相对粘度、运动粘度
2.流线与迹线
流线:某瞬时流场中的一条空间曲线,该瞬时曲线上的点的速度与该曲线相切。 迹线:流体微元的运动轨迹。
3.断面平均流速与时间平均流速
vdAqV?AV??AA 断面平均流速:时间平均流速:v?1T?T0vdt
4.层流与紊流
层流:定向有规律的流动 紊流:非定向混杂的流动
5.流体连续介质模型
以流体微元这一模型来代替实际由分子组成的结构,流体微元具有足够数量的分子,连续充满它所占据的空间,彼此间无间隙,这就是连续介质模型。
6.恒定与非恒定流动
流体运动的运动参数在每一时刻都不随时间发生变化,则这种流动为恒定流动;流体运动的参数在每一时刻都随时间发生变化,则这种流动为非恒定流动。
二.推导直角坐标系中的连续性微分方程。(10分)
在空间流场中取一固定的平行六面体微小空间,边长为dx,dy,dz,所取坐标如图所示。中心为点A(x,y,z),该点速度为vx,vy,vz,密度为?(x,y,z,t),计算在dt时间内流入、流出该六面体的流体质量。
首先讨论沿y方向的质量变化。由于速度和密度是坐标的连续函数,因此由abcd而流入的质量为:
?1?(?vy)??v?dy?dxdzdt ?y2?y??由efgh面流出的质量为
?1?(?vy)?dy?dxdzdt ??vy?2?y??因此,在dt时间内,自垂直于y轴的两个面流出、流入的流体质量差为:
?my??(?vy)?ydxdydzdt
同样道理可得dt时间内,分别垂直于x,z轴的平面流出、流入的流体质量差为:
?mx??(?vx)dxdydzdt ?x?(?vz)dxdydzdt ?z?mz?因此,在dt时间内流出、流入整个六面体的流体质量差为
??(?vx)?(?vy)?(?vz)??mx??my??mz?????dxdydzdt
?y?z???x对于可压缩流体,在dt时间内,密度也将发生变化,流体密度的变化同样引起六面体内流体质量的改变。以?mt表示质量随时间的增量,设t时刻流体密度为?,t?dt时刻流体密度为????dt,则 ?t ?mt???dxdydzdt ?t由质量守恒条件知
?mx??my??mz???mt(注意正负号) 故有
??(?vx)?(?vy)?(?vz)?????dxdydzdt??dxdydzdt ???x?y?z?t??整理得
???(?vx)?(?vy)?(?vz)????0 ?t?x?y?z即为直角坐标系下的连续性微分方程
三.由粘性流体微小流束的伯努利方程推导出总流的伯努利方程。(15分)
如图:1-1和2-2断面为两个缓变的过流断面,任取一个
微小流束i,当粘性流体恒定流动且质量力只有重力作用时,对微小流束的1-1和2-2断面伯努利方程,得单位重力流体的总能量:
pvpv'单位时间z1i?1i?1i?z2i?2i?2i?hW?g2g?g2g内流过微小流束过流断面1-1和2-2流体的总能量为:
2222pvpv'(z1i?1i?1i)v1idA1i?g?(z2i?2i?2i?hW)v2idA2i?g
?g2g?g2g单位时间内总流流经过流断面1-1和2-2流体的总能量为
22p1iv1ip2iv2i'(z??)v?gdA?(z??)v?gdA?h?A11i?g2g1i1i?A22i?g2g2i2i?A2Wv2i?gdA2i
前面讲过在缓变过流断面上,所有各点压强分布遵循静压强的分布规律:z?此在所取的过流断面为缓变流动的条件下,积分
p?C,因?g?A(z?ppp)?gvdA??(z?)?gdqV?(z?)?gqV (1)
qV?g?g?g若以平均流速V计算单位时间内通过过流断面的流体动能:
v2?V2?A2g?gvdA?2g?gqV (2)
单位时间内流体克服摩擦阻力消耗的能量
?A2'''hWv2id?gA2i??hW?gdqV2中,hW为一无
qV2规律变化的值,但可令
?qV2'hW?gdqV2?gqV?hW (3)
将(1)(2)(3)代入上式,并且已知不可压流体,流量连续,得:
p?Vp?V(z1?1?11)?gqV?(z2?2?22)?gqV?hW?gqV
?g2g?g2g等式两边同除?gqV,得到重力作用下不可压缩粘性流体恒定总流的伯努利方程:
22p?Vp?Vz1?1?11?z2?2?22?hW
?g2g?g2g22四.推导静止流体对平面壁的作用力计算公式。(15分)
ab为一块面积为A的任意形状的平板,与液体表面呈?角放置,液体内部的压强取相
对压强。
作用在微分面积dA上的压力:
dFp?pdA??ghdA??g(ysin?)dA
作用在平面ab上的总压力:
Fp??dFp??gsin??ydA
AA由工程力学知:
?AydA?ycA
为受压面面积A对OX轴的静矩 再由hc?ycsin?,pc?pa??ghc
故 Fp??g(yCsin?)A??ghcA?(pc?pa)A 即静止液体作用在平面上的总压力等于受压面面积与其形心处的相对压强的乘积。
五.如图,盛水容器以转速n?450r/min绕垂直轴旋转。容器尺寸D?400mm,d?200mm,
h2?350mm,水面高h1?h2?520mm,活塞质量
m?50kg,不计活塞与侧壁的摩擦,求螺栓组A、B所受的力。(15
分)
z??2r22g
将坐标原点C取在液面处,则液面方程设液面上O点处压强为
p0,则
?则
d/20(p0???2r22)2?rdr?mg
4mg????2(d/2)2p0?4?r2
求螺栓组A受力:
在上盖半径为r处取宽度为dr的环形面积,该处压强为
p?p0?(h1?上盖所受总压力为
?2r22g)?g
FP1??D/2d/2p?2?rdr??D/2d/2(p0?(h1??2r22g)?g)?2?rdr?3723N
方向垂直向上。
螺栓组B受力:
下底r处压强为
p?p0?(h1?h2?下底受总作用力: FP2??2r22g)?g
?D/20p?2?rdr??D/20(p0?(h1?h2??2r22g)?g)?2?rdr?4697N
方向垂直向下。
六.将一平板深入水的自由射流内,垂直于射流的轴线。该平板截去射流流量的一部分qV1,引起射流剩余部分偏转角度?。已知射流流速
V?30m/s,全部流量qV?36?10?3m3/s,截去流
量qV?12?10?3m3/s。求偏角?及平板受力F。(15分)
取控制体如图,对I-I和1-1列伯努利方程得
V1?V2?V
由动量守恒(取动量修正系数均为1)
Vsin?qV2?VqV1?0
sin??所以
VqV11?VqV22
故有??30?
在水平方向列动量方程
?R??qV2?Vcos???qVV?456.46(N)