18.(1)(?3,0);(2)19.(1)
5?1. 21;(2)9.59?. 41?x1?1(0?x?1);20.(1)f(x)?log2(2)ymax?(x?0时取最值); x1?2a?a2(3)(0,2] 提示:g(x)?11?a1?a?2x?1?a?2x?1?a2?2x?22x?3a
?a,(t?2x?(0,1])a2?t?2t?3a 因为-a<0,所以当x=0,t=1时,分母取到最小值从而分式值取到最小值,
a22此时t?t?t?2a2?1?0?a?2 21.(1)证明:存在m?2n,此时?n?N*,cn?2n?am?2n?1?cn?1?2n?2(2)不是.反例:n?4时,m无解; (3)??a?0?q?2. 提示:因为{aqn?1}为递增数列,因此??a?0?a?0?q?1或者??0?q?1
①当??a?00?q?1时,??n?N*,cn?0,因此??T3?T2?T1?c1?c2?c3??
因此不存在c2?Tm?c3,不合题意。
②当??a?0时,?q?1cn?1qm?1n?Tm?cn?1?q?q?1?qn? qn?1(q?1)?1?qm?qn(q?1)?1?qn?1[(q?1)?1qn?1]?qm?qn[(q?1)?1qn]两边同时取对数得:n?1?logq[(q?1)?1qn?1]?m?n?logq[(q?1)?1qn] 6 / 7
证毕
1],x?0 xq记f(x)?logq[(q?1)?则n?1?f(n?1)?m?n?f(n) 下面分析函数f(n?1),f(n)的取值范围:
显然q?1时,f(x)?logq[(q?1)?1],x?0为减函数, xq因此f(??)?f(x)?f(0),即logq(q?1)?f(x)?1
(Ⅰ)当q?2时,logq(q?1)?0,因此总有0?f(n)?f(n?1)?1 此时??n?1?f(n?1)?n?1?1
?n?f(n)?n+0因此总存在m?n符合条件,使得n?1?f(n?1)?n?m?n?f(n)成立
(Ⅱ)当1?q?2时, logq(q?1)?0, 根据零点存在定理,并结合f(x)的单减性可知: 存在唯一正整数k使得f(k)?0?f(k?1)
此时??k?1?f(k?1)?k?1
?k?f(k)?k即k?1?k?1?f(k?1)?m?k?f(k)?k 显然不存在满足条件的正整数m 综上:a?0,q?2
7 / 7