二、自主探究
1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?
2、自己动手操作,看看可以表示有理数的直线必须满足什么条件? 引导归纳:
1)、画数轴需要三个条件,即 、 方向和 长度。
2)数轴
【课堂练习】
1、请你画好一条数轴
2、利用上面的数轴表示下列有理数 1.5, —2, 2, —2.5, 9, ?223, 0; 3、 写出数轴上点A,B,C,D,E所表示的数:
三、寻找规律
1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?
2、每个数到原点的距离是多少?由此你又有什么发现?
3、进一步引导学生完成P9归纳 【要点归纳】:
画数轴需要三个条件是什么? 【拓展练习】
1、在数轴上,表示数-3,2.6,?35,0,413,?223,-1的点中,在原点左边的点有 个。 2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( )
A.-5, B.-4 C.-3 D.-2
3、你觉得数轴上的点表示数的大小与点的位置有什么关系? 【总结反思】:
6
课题:1.2.3 相反数
【学习目标】:
1、掌握相反数的意义;
2、掌握求一个已知数的相反数; 3、体验数形结合思想;
【学习重点】:求一个已知数的相反数; 【学习难点】:根据相反数的意义化简符号。 【导学指导】
一、温故知新
1、数轴的三要素是什么?在下面画出一条数轴:
2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是 ,它们分别在原点的左边和右边,我们说,这两点关于原点对称。
二、自主学习
自学课本第10、11的内容并填空: 1、相反数的概念
像2和—2、5和—5、3和—3这样,只有 不同的两个数叫做互为相反数。 2、练习
(1)、2.5的相反数是 ,—1和 是互为相反数, 的相反数是2010;
(2)、a和 互为相反数,也就是说,—a是 的相反数 例如a=7时,—a=—7,即7的相反数是—7. a=—5时,—a=—(—5),“—(—5)”读作“-5的相反数”,而—5的相反数是5,所以, —(—5)=5
你发现了吗,在一个数的前面添上一个“—”号,这个数就成了原数的 (3)简化符号:-(+0.75)= ,-(-68)= , -(-0.5 )= ,-(+3.8)= ; (4)、0的相反数是 .
3、数轴上表示相反数的两个点和原点的距离 。 【课堂练习】 P11第1、2、3题 【要点归纳】:
1、本节课你有那些收获? 2、还有没解决的问题吗? 【拓展训练】
1.在数轴上标出3,-1.5,0各数与它们的相反数。
152.-1.6的相反数是 ,2x的相反数是 ,a-b的相反数是 ;
7
3. 相反数等于它本身的数是 ,相反数大于它本身的数是 ;
4.填空:
(1)如果a=-13,那么-a= ; (2)如果-a=-5.4,那么a= ; (3)如果-x=-6,那么x= ; (4)-x=9,那么x= ;
5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数。 【总结反思】:
课题:1.2.4绝对值
【学习目标】:
1、理解、掌握绝对值概念.体会绝对值的作用与意义; 2、掌握求一个已知数的绝对值和有理数大小比较的方法; 3、体验运用直观知识解决数学问题的成功; 【重点难点】:绝对值的概念与两个负数的大小比较 【导学指导】
一、知识链接 问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近)
二、自主探究
1、由上问题可以知道,10到原点的距离是 ,—10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对 。 这时我们就说10的绝对值是10,—10的绝对值也是10; 例如,—3.8的绝对值是3.8;17的绝对值是17;—6
1的绝对值是 3一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣。 2、练习 (1)、式子∣-5.7∣表示的意义是 。 (2)、—2的绝对值表示它离开原点的距离是 个单位,记作 ; (3)、∣24∣= . ∣—3.1∣= ,∣—
1∣= ,∣0∣= ; 38
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ; 0的绝对值是 。 用式子表示就是: 1)、当a是正数(即a>0)时,∣a∣= ; 2)、当a是负数(即a<0)时,∣a∣= ; 3)、当a=0时,∣a∣= ;
4、随堂练习 P12第1、2大题(直接做在课本上) 5、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要 左边的数。 也就是: 1)、正数 0,负数 0,正数大于负数。 2)、两个负数,绝对值大的 。 【课堂练习】:
1、自学例题 P13 (教师指导)
2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣ 【要点归纳】:
一个正数的绝对值是 ;一个负数的绝对值是它的 ; 0的绝对值是 。 【拓展练习】
1.如果?2a??2a,则a的取值范围是 ??????????( ) A.a>O
B.a≥O
C.a≤O
D.a<O
2.x?7,则x?______; ?x?7,则x?______. 3.如果a?3,则a?3?______,3?a?______.
4.绝对值等于其相反数的数一定是?????????????( ) A.负数 B.正数 C.负数或零 D.正数或零
5.给出下列说法:
①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等. 其中正确的有???????????????????( ) A.0个 B.1个 C.2个 D.3个 【总结反思】:
9
课题:1.3.1有理数的加法(1)
【学习目标】:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算; 2、会利用有理数加法运算解决简单的实际问题;
【学习重点】:有理数加法法则 【学习难点】:异号两数相加 【导学指导】 一、知识链接
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。 于是红队的净胜球数为 4+(-2), 蓝队的净胜球数为 1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2) 下面我们一起借助数轴来讨论有理数的加法。 二、自主探究
1、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两 次共向西走多少米?很明显,两次共向西走了 米。 这个问题用算式表示就是: 如图所示:
3)如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
①先向东走3米,再向西走5米,这个人从起点向( )走了( )米;
10