②先向东走5米,再向西走5米,这个人从起点向( )走了( )米; ③先向西走5米,再向东走5米,这个人从起点向( )走了( )米。 写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人 从起点向东(或向西)运动了 米。写成算式就是 2、师生归纳两个有理数相加的几种情况。
3.你能从以上几个算式中发现有理数加法的运算法则吗? 有理数加法法则
(1)同号的两数相加,取 的符号,并把 相加。
(2)绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 ; (3)一个数同0相加,仍得 。 4.新知应用
例1 计算(自己动动手吧!) (1) (-3)+(-9); (2) (-4.7)+3.9. 例2 (自己独立完成) 【课堂练习】:
1.填空:(口答) (1)(-4)+(-6)= ; (2)3+(-8)= ; (4)7+(-7)= ; (4)(-9)+1 = ; (5)(-6)+0 = ; (6)0+(-3) = ; 2. 课本P18第1、2题 【要点归纳】:
有理数加法法则: 【拓展训练】: 1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; (4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。 2.已知│a│= 8,│b│= 2; (1)当a、b同号时,求a+b的值; (2)当a、b异号时,求a+b的值。 【总结反思】:
课题:1.3.1有理数的加法(2)
【学习目标】:掌握加法运算律并能运用加法运算律简化运算;
11
【重点难点】:灵活运用加法运算律简化运算; 【导学指导】
一、温故知新
1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、
2、计算
? 30 +(-20)= (-20)+30=
? [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]= 思考:观察上面的式子与计算结果,你有什么发现? 二、自主探究
1、请说说你发现的规律
2、自己换几个数字验证一下,还有上面的规律吗
3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应, 即:两个数相加,交换加数的位置,和 .式子表示为 三个数相加,先把前两个数相加,或者先把后两个数相加,和 用式子表示为
想想看,式子中的字母可以是哪些数? 例1 计算: 1)16 +(-25)+ 24 +(-35) 2)(—2.48)+(+4.33)+(—7.52)+(—4.33)
例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。 【课堂练习】
课本P20页练习 1、2 【要点归纳】:
你会用加法交换律、结合律简化运算了吗? 【拓展训练】 1.计算:
(1)(-7)+ 11 + 3 +(-2); (2)
12511?(?)??(?)?(?). 436432.绝对值不大于10的整数有 个,它们的和是 .
3、填空:
(1)若a>0,b>0,那么a+b 0. (2)若a<0,b<0,那么a+b 0.
(3)若a>0,b<0,且│a│>│b│那么a+b 0. (4)若a<0,b>0,且│a│>│b│那么a+b 0.
3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元? 4、课本P20实验与探究
【总结反思】:
12
课题:1.3.2有理数的减法(1)
【学习目标】:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则; 2、会正确进行有理数减法运算;
3、体验把减法转化为加法的转化思想;
【重点难点】:有理数减法法则和运算 【导学指导】
一、知识链接
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢?
试试看,计算的算式应该是 .能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);
想想看,温差到底是多少呢?那么,3―(―2)= ; 二、自主探究
1、还记得吗,被减数、减数差之间的关系是:被减数—减数= ; 差+减数= 。
2、请你与同桌伙伴一起探究、交流:
要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 ;也就是3―(―2)=5;
再看看,3+2= ;所以3―(―2) 3+2;
由上你有什么发现?请写出来 . 3、换两个式子计算一下,看看上面的结论还成立吗?
—1—(—3)= , —1+3= ,所以—1—(—3) —1+3; 0—(—3)= , 0+3= ,所以0—(—3) 0+3; 4、师生归纳
1)法则:
2)字母表示: 三、新知应用 1、例题
例1 计算:
(1) (-3)―(―5); (2)0-7; (3) 7.2―(―4.8); (4)-3请同学们先尝试解决
【课堂练习】课本 P23 1.2 【要点归纳】: 有理数减法法则: 【拓展训练】 1、计算:
(1)(-37)-(-47); (2)(-53)-16;
11?5; 2413
(3)(-210)-87; (4)1.3-(-2.7); (5)(-2
31)-(-1); 42 2.分别求出数轴上下列两点间的距离: (1)表示数8的点与表示数3的点; (2)表示数-2的点与表示数-3的点; 【总结反思】:
课题:1.3.2 有理数的减法(2)
【学习目标】:
1、理解加减法统一成加法运算的意义;
2、会将有理数的加减混合运算转化为有理数的加法运算;
【重点难点】:有理数加减法统一成加法运算; 【导学指导】 一、知识链接
1、一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 记作 上升4.5千米 +4.5千米 下降3.2千米 —3.2千米 上升1.1千米 +1.1千米 下降1.4千米 —1.4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。 2、你是怎么算出来的,方法是 二、自主探究
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧! 2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写 如:(-20)+(+3)-(-5)-(+7) 有加法也有减法 =(-20)+(+3)+(+5)+(-7) 先把减法转化为加法 = -20+3+5-7 再把加号记在脑子里,省略不写 可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”. 4、师生完整写出解题过程 5、补充例题:计算-4.4-(-4【课堂练习】 计算:(课本P24练习) (1)1—4+3—0.5;
14
117)-(+2)+(-2)+12.4; 5210(2)-2.4+3.5—4.6+3.5 ; (3)(—7)—(+5)+(—4)—(—10); 4)
3712??(?)?(?)?1; 4263 【要点归纳】: 【拓展训练】: 1、计算:
1)27—18+(—7)—32 2)(?)?(?)?(?)?(?1) 【总结反思】:
274959
课题:1.4.1有理数的乘法(1)
【学习目标】:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算; 2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;
【重点难点】:有理数乘法法则 【导学指导】 一、温故知新
1.有理数加法法则内容是什么? 2.计算
(1)2+2+2= (2)(-2)+(-2)+(-2)= 3.你能将上面两个算式写成乘法算式吗?
二、自主探究
1、自学课本28-29页回答下列问题
(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 .
( 2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置? 可以表示为
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置? 可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置? 可以表示为
由上可知:
15