W??0F?dy??0?mg?agy?dy?882J
10103 -17 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.
题 3-17 图
分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式W??F?ds,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.
解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即
WP?PΔh?mgl?1?cosθ??0.53J
在小球摆动过程中,张力FT 的方向总是与运动方向垂直,所以,张力的功
WT??FT?ds
(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为
Ek?WP?0.53J
小球在最低位置的速率为
v?2EK2WP??2.30m?s?1 mmmv2FT?P?
lmv2FT?mg??2.49N
l(3) 当小球在最低位置时,由牛顿定律可得
3 -18 一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上.此质点在粗糙水平面上作半径为r 的圆周运动.设质点的最初速率是v0 .当它运动一周时,其速率为v0 /2.求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?
分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中克服摩擦力作功上.由此,可依据动能定理列式解之.
解 (1) 摩擦力作功为
22??mv0 W?Ek?Ek0?mv2?mv0 (1)
121238(2) 由于摩擦力是一恒力,且Ff =μmg,故有
W?Ffscos180o??2?r?mg (2)
由式(1)、(2)可得动摩擦因数为
23v0 μ?16πrg2
(3) 由于一周中损失的动能为mv0,则在静止前可运行的圈数为
3
8
n?Ek04?圈 W33 -19 如图(a)所示,A 和B 两块板用一轻弹簧连接起来,它们的质
量分别为m1 和m2 .问在A 板上需加多大的压力,方可在力停止作用后,恰能使A 在跳起来时B 稍被提起.(设弹簧的劲度系数为k)
题 3-19 图
分析 运用守恒定律求解是解决力学问题最简捷的途径之一.因为它与过程的细节无关,也常常与特定力的细节无关.“守恒”则意味着在条件满足的前提下,过程中任何时刻守恒量不变.在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立的条件.该题可用机械能守恒定律来解决.选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态1),直到B 板刚被提起(取作状态2),在这一过程中,系统不受外力作用,而内力中又只有保守力(重力和弹力)作功,支持力不作功,因此,满足机械能守恒的条件.只需取状态1 和状态2,运用机械能守恒定律列出方程,并结合这两状态下受力的平衡,便可将所需压力求出.
解 选取如图(b)所示坐标,取原点O处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有
F1 =P1 +F (1)
当外力撤除后,按分析中所选的系统,由机械能守恒定律可得
1212ky1?mgy1?ky2?mgy2 22式中y1 、y2 为M、N 两点对原点O 的位移.因为F1 =ky1 ,F2 =ky2 及
P1 =m1g,上式可写为
F1 -F2 =2P1 (2)
由式(1)、(2)可得
F =P1 +F2 (3)
当A 板跳到N 点时,B 板刚被提起,此时弹性力F′2 =P2 ,且F2 =F′2 .由式(3)可得
F =P1 +P2 =(m1 +m2 )g
应注意,势能的零点位置是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点. 3 -20 如图所示,一质量为m的木块静止在光滑水平面上,一质量
为m/2的子弹沿水平方向以速率v0射入木块一段距离L(此时木块滑行距离恰为s)后留在木块内,求:(1)木块与子弹的共同速度v,此过程中木块和子弹的动能各变化了多少?(2)子弹与木块间的摩擦阻力对木块和子弹各作了多少功?(3)证明这一对摩擦阻力的所作功的代数和就等于其中一个摩擦阻力沿相对位移L所作的功.(4)证明这一对摩擦阻力所作功的代数和就等于子弹-木块系统总机械能的减少量(亦即转化为热的那部分能量).
题 3-20 图
分析 对子弹-木块系统来说,满足动量守恒,但系统动能并不守恒,这是因为一对摩擦内力所做功的代数和并不为零,其中摩擦阻力对木块作正功,其反作用力对子弹作负功,后者功的数值大于前者,通过这一对作用力与反作用力所做功,子弹将一部分动能转移给木块,而另一部分却转化为物体内能.本题(3)、(4)两问给出了具有普遍意义的结论,可帮助读者以后分析此类问题. 解 (1)子弹-木块系统满足动量守恒,有
mv0/2?(m/2?m)v 解得共同速度
1v?v0 3对木块 ?Ek2?mv2?0?1m221m221212mv0 182922??mv0对子弹 ?Ek2?()v2?()v0
(2) 对木块和子弹分别运用质点动能定理,则
对木块 W1??Ek1?12mv0 1829对子弹 W2??Ek2??mv02
(3) 设摩擦阻力大小为Ff,在两者取得共同速度时,木块对地位移为s,则子弹对地位移为L+s,有 对木块 W1?Ffs
对子弹 W2??Ff(L?s) 得 W?W1?W2??FfL
式中L即为子弹对木块的相对位移,“-”号表示这一对摩擦阻力(非保守力)所作功必定会使系统机械能减少. (4) 对木块 W1?Ffs?mv2
2对子弹 W2??Ff(L?s)?()v2?()v0
121m221m22两式相加,得
2 W1?W2?[mv2?()v2]?()v0
121m221m22即 ?FfL??32mv0 18两式相加后实为子弹-木块系统作为质点系的动能定理表达式,左边为一对内力所作功,右边为系统动能的变化量.
3 -21 用铁锤把钉子敲入墙面木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击,能把钉子钉入木板1.00 ×10 -2 m.第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?
分析 由于两次锤击的条件相同,锤击后钉子获得的速度也相同,所具有的初动能也相同.钉子钉入木板是将钉子的动能用于克服阻力作功,由功能原理可知钉子两次所作的功相等.由于阻力与进入木板的