物理学教程(第二版)上册3--4单元课后习题答案详解(6)

2019-01-10 12:06

4-4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A)L 不变,ω增大 (B)两者均不变 (C)L不变,ω减小 (D)两者均不确定

分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L不变,此时应有下式成立,即

mvd?mvd?J0ω0?Jω

式中mvd为子弹对点O的角动量?0为圆盘初始角速度,J 为子弹留在盘中后系统对轴O的转动惯量,J0为子弹射入前盘对轴O的转动惯量.由于J>J0,则?<?0.故选(C).

4-5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )

(A)角动量守恒,动能守恒 (B)角动量守恒,机械能守恒 (C)角动量不守恒,机械能守恒 (D)角动量不守恒,动量也不守恒

(E)角动量守恒,动量也守恒

分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×mv=恒量,式中r为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B).

4-6 一汽车发动机曲轴的转速在12 s 内由1.2×103r·min-1均匀的增加到2.7×103r·min-1.(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?

分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的

运动学规律有类似的关系,本题为匀变速转动.

解 (1)由于角速度ω=2πn(n 为单位时间内的转数),根据角加速度的定义α?dω,在匀变速转动中角加速度为 dtω?ω02π?n?n0?α???13.1rad?s?2 tt(2)发动机曲轴转过的角度为

???0t??t2?12???02t?π?n?n0?t

在12 s内曲轴转过的圈数为

N?θn?n0?t?390圈 2π24-7 水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动

惯量JAA′=1.93 ×10-47kg·m2,对BB′轴转动惯量JBB′=1.14 ×10-47kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D和夹角θ.假设各原子都可当质点处理.

题 4-7 图

分析 如将原子视为质点,则水分子中的氧原子对AA′轴和BB′轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可. 解 由图可得

JAA??2mHd2sin2θ JBB??2mHd2cos2θ

此二式相加,可得JAA??JBB??2mHd2 则 d?JAA??JBB??9.59?10?11m 2mH由二式相比,可得 JAA?/JBB??tan2θ

则 θ?arctanJAA?1.93?arctan?52.3o JBB?1.144-8 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10

㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103kg·m-3,求飞轮对轴的转动惯量.

题 4-8 图

分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到.

解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得

1?d?1?d?J?J1?J2?2?m1?1??m2?2?2?2?2?2? ?1?414?πρ?ld1?ad2??0.136kg?m216?2?22

4-9 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承

在O点上,然后在绕过飞轮的绳子的一端挂一质量为m的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).

题 4-9 图

分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.

该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.

解1 设绳子的拉力为FT,对飞轮而言,根据转动定律,有

FTR?Jα (1)

而对重物而言,由牛顿定律,有

mg?FT?ma (2)

由于绳子不可伸长,因此,有

a?Rα (3)

重物作匀加速下落,则有

h?12at (4) 2由上述各式可解得飞轮的转动惯量为

?gt2?J?mR??2h?1??

??2解2 根据系统的机械能守恒定律,有

11?mgh?mv2?Jω2?0 (1′)

22而线速度和角速度的关系为

v?Rω (2′)

又根据重物作匀加速运动时,有

v?at (3′)

v2?2ah (4′)

由上述各式可得

?gt2?J?mR??2h?1??

??2若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需

通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.

4-10 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×103N·m,涡轮的转动惯量为25.0kg·m2.当轮的转速由2.80×103r·min-1增大到1.12×104r·min-1时,所经历的时间t为多

少?

分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解. 解1 在匀变速转动中,角加速度α?得飞轮所经历的时间

t?ω?ω02πJ?n?n0??10.8s J?MMω?ω0,由转动定律M?Jα,可t解2 飞轮在恒外力矩作用下,根据角动量定理,有

?Mdt?J?ω?ω?

00t则 t?ω?ω02πJ?n?n0??10.8s J?MM4-11 质量为m1和m2的两物体A、B分别悬挂在图(a)所示的组合轮两

端.设两轮的半径分别为R和r,两轮的转动惯量分别为J1和J2,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.

题 4-11 图

分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.

解 分别对两物体及组合轮作受力分析,如图(b).根据质点的牛顿定律和刚体的转动定律,有

?P1?FT1?m1g?FT1?m1a1 (1)


物理学教程(第二版)上册3--4单元课后习题答案详解(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:小学数学教育叙事十篇

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: