第一章 ESP电子稳定系统简介
第一阶段 制动/向左 不足转向 左后轮 前轮保留侧向力有效保证车辆的转向
第二阶段 向右 不足转向 右前轮 保证后轴的最佳侧向力,后轴车轮自由转动
第三阶段 向左 过度转向 左前轮 为防止车辆出现甩尾,为限制前轴侧向力的建立,在特殊危险情形下这个车轮将强烈制动
第四阶段 中间 稳定 无 在所有不稳定行驶状态被校正后,ESP结束调整工作
2.ESP制动油路控制过程(见图5)调节控制阀 制动分泵(e)调节高压阀 回油泵(f)部件组成:入口阀(c) 动态液压泵(g)出口阀(d) 制动助力器(h)建压: ESP进行控制凋整.动态液压泵(g)开始从制动液储液罐中向制动管路输送制动液.在制动分泵和回油泵内很快建立制动压力,回油泵开始输送制动液使制动压力进一步提高。保压: 入口阀关闭,出口阀也保持关闭。制动压力不能卸压。回油泵停止工作,高压阀关闭。卸压: 控制阀反向打开在出13阀打开时,入13阀保持关闭。制动液通过制动主缸返回储液罐.
图5 ESP制动油路控制过程
8
第二章 汽车电子稳定系统分析
第二章 汽车电子稳定系统分析
2.1 ESP系统的控制原理
由汽车行驶理论可知,控制汽车的力(牵引力、制动力及转向力等)来自于地面的反作用力,此反作用力的极限值等于车轮与地面间的附着力,若行驶中汽车所需的控制力大于该附着力,则汽车将失去控制。
汽车行驶在一定的路面上,车轮与路面间的附着系数一定,其与路面间的附着力也一定。车辆的牵引力(或制动力)与侧向力的合力不得大于附着力,否则车辆将失去稳定性。显然,牵引力(或制动力)若增大,则路面可提供的侧向力减小。当滑移率A=0时,车轮与路面间不打滑,侧向附着状态最佳;而A=1时,车轮与地面间纯滑动,侧向附着状况最差,不能控制车辆转向。ESP系统通过直接控制作用在4个车轮上的制动力或牵引力,间接改变车轮受到的侧向力及汽车受到的横摆力矩,使汽车的运动方向得到修正。
2.2 ESP系统特点和性能
2.2.1 ESP系统的特点
(1)实时监控。ESP是一个实时监控系统,它每时每刻都在监控驾驶者的操控、路面反应和汽车运动状态,并不断向发动机和制动系统发出指令。
( 2 ) 主动干预。ABS/EBD等系统在起作用时,系统对驾驶者的操控起一定干预作用,但它不能调控发动机,而ESP则是主动调控发动机的转速并可调整每个车轮的制动力(四通道系统),以修正汽车的过度转向和转向不足。
(3)事先提醒。ESP具有实时警示功能,当驾驶者操作不当和路面异常时,它会在主动干预的同时用警告灯警示驾驶者。
9
第二章 汽车电子稳定系统分析
2.2.2 ESP系统的功能
奔驰公司关于ESP系统适用性和可靠性检测试验结果表明,ESP系统在汽车行驶的各种工况下都能起到良好效果,如弯道行驶、急速绕过障碍等。ESP系统不仅可提高汽车在干燥路面上行驶时的稳定性,还可以在路面附着性较差(如结冰、湿滑及碎石等)时起作用。在上述不利状况下,车轮与路面之间的附着力降低,汽车容易发生侧滑和跑偏,失去方向稳定性,甚至在急转弯时发生翻车事故。这时ESP系统干预驾驶操作,精确控制各车轮的受力以稳定车辆。
在过去几年中,多家世界著名汽车厂商和研究机构对ESP的有效性进行了科学研究。结果表明,装备ESP系统的汽车可以减少80%由侧滑引起的交通事故,而且可有效降低42%的行车事故(并非因驾驶员受其他路人的影响而失去对车辆控制而引起的交通事故)。
虽然ESP系统是汽车主动安全技术中堪称里程碑式的突破,但它并不是车辆自动驾驶系统,不能因为使用了ESP系统,驾驶员就粗心大意,ESP系统并不能在任何情况下都能保持汽车的行驶稳定性。
2.3 ESP系统的应用
奔驰公司是第一个在其轿车上使用ESP系统的汽车制造商,该系统的首次亮相是在1995年,目前,德国已有超过70% 的新注册车辆配备了ESP。博世公司的研究表明,2005年,欧洲大约40%的新注册车辆配备了ESP。在高档车上,ESP已成为标准配置,在中档车上的装配率也迅速提高,在紧凑型车上装配率稍低。在美国和日本,ESP的装配率也迅速提高。美国政府要求所有汽车必须在2011年9月前配备防止倾翻的电子稳定控制装置。这将是继安全带之后的又一项重大强制性措施。
在中国,ESP的装配率还较低,目前,仅在高档豪华车上较常见,而中高档的几款销量领先的车型(如帕萨特、 马自达6等)都没有配置ESP,甚至连
10
第二章 汽车电子稳定系统分析
宝马3系和5系、奥迪A4和A6都未将ESP作为其标准配置。
2.4 ESP系统的可靠性
梅塞德斯一奔驰公司从1994年起就对ESP系统进行了适用性和可靠性的全面验证试验。
在微机控制系统的ROM中,预先储存的控制程序中的标准技术数据,应该来源于大量的实车测试数据。但由于在没有安全保障的情况下的实车试验,有可能造成无法弥补的安全事故后果,因此标准技术数据的取得,采用了模拟器。模拟器内输入了大量的通过实验采集的数据,可以仿真出很多复杂的路面状况和驾驶过程。再通过80位梅塞德斯轿车车主用模拟器进行时速为100km/h的模拟路面驾驶试验,得到各种不同性能的汽车在各种驾驶过程中的响应。模拟器检测手段既安全,又可以得到很多实车试验无法测量的数据。比如,在试验场的4个转弯处,用模拟器模拟路面突然结冰的情况,这将使车轮和路面之间的附着力在几米的路程内减少70%以上。如果轿车没有ESP系统,则78%的驾驶员不能将他们的汽车稳定在冰雪路面上,还可能遭受汽车连续3次翻转造成的伤害。有了ESP系统,所有参加过模拟测试的驾驶员都能避免汽车翻转事故的发生。
2.5 汽车底盘电子控制系统的发展
2.5.1 集成底盘管理系统
随着电子技术特别是大规模集成电路和微型电子计算机技术的高速发展,汽车的电子化程度越来越高。汽车的底盘系统也改变了以往那种完全依靠液压或气压执行机构来传递力的机械式结构,开始步入电子伺服控制(By-wke,操纵装置与执行器之间靠电信号联系而非机械的连接)阶段,底盘综合控制系统
11
第二章 汽车电子稳定系统分析
也已开始出现。先进的底盘电子控制系统优化了车轮与地l面之间的附着状况,显著地改善了汽车的动力性、安全性和舒适性。
汽车底盘电子控制系统将逐步形成一个集成底盘管理(ICM)系统。该系统将集成所有的底盘电控子系统,实现各子系统问硬件、能量和信息的共享,以最大限度地获取系统集成带来的增效作用,提高汽车的安全性、舒适性和经济性。
2.5.2 动力车身控制系统(Dynamic Body Control)
对于多用途运动车(SUV)和其他质心较高的汽车,动力车身控制系统町最大程度地提高转向稳定能力,同时汽车行驶舒适感增强。在汽车越野行驶时,车桥通过相互配合来获得更好的牵引性能。动力车身控制系统使用1—2个主动式平衡杆模块,通过对平衡杆施加可调节的预加载荷来防止汽车转弯时发生左右摇晃。当汽车车身要发生倾斜时,加速度计监测到汽车侧滑倾向,将信号传到控制系统ECU,ECU指令向平衡杆执行器通入压力油,压力油产生力的大小根据加速度计监测到的汽车横向加速度大小和汽车产生摇晃的时间来确定。
2.6 新一代ESP
新一代汽车电子稳定系统将主动转向控制系统(Activesteefing Control。ASC)和可选择悬架模式的主动悬架控制系统(Active Damping Control,ADC)和ESP集成在一起,使汽车的动态稳定控制技术更加完善,提高了汽车在任何情况下的行驶稳定性和操纵稳定性。
在非危险行驶状况下,主动转向控制系统使驾驶更灵活,以增加驾驶乐趣。在危险行驶状况下,主动转向控制系统与制动系统、发动机管理系统共同控制汽车的行驶稳定性和乘坐舒适性。
12