数学分析选讲刘三阳 部分习题解答(2)

2019-01-19 19:27

11??xx④ limx??1?x??x?

x????21?1?1?ln1?x??lnx2?1解:原式?limx?ex?ex??limx?ln?1?x??lnx?

x???x???x?x???21??ln?1??x?? ?limx?ln1?x?lnx?lim?1 ?????x???x???1xx?1??2?cosx?⑤ lim3????1? x?0x3??????ln?2?cosx??ln31?2?cosx?解:原式?lim3ln? ?lim???2x?0xx?03x6??1x⑥ limcosx?ecosx?3?x2

cosxx?0cosx?1?e解:原式?lim12??x2?1x?0cosx?3cosx?,而1?cosx?1x22,e?x2?1,cosx?1,

?x?0?且limx?0122。故原式????1?21?x2x1x?xx222??6

123计算下列极限 ① lim1?cosx?lncosxex2x?0?e?x2?sinx22

解:1?cosx?故原式?1。

312x,e?ex2?x2?x???x2?2???2x2,sinx?x,且lim222x?x22x?0??2??1,

② limcosx?tgx?3cosx?sinxx?0ln?1?x??ln?1?sinx??sinx1 2? 解:原式=lim3x?0x??sinx?x3???tgx?sinx?③ limln?x?ex??2sinxx?0sin?2tgx??sin?tgx??tgx

解:原式可如下考虑:若x?0时,sin?2tg2x??sin?tg2x??tg2x?2x, 又?tgx??x,limx?e?12xx2x?xx?0??2??1,lnx?ex?x?ex?1?2sinx?2x

??且limx?0?1??1,故原式?limaxbxx?e?1?2x2x?xxx?0?4。

④ lim?1?ax???1?bx?x?0?tg2x?x??sinx?x?eax,a?b

bx解:原式?limln?1?ax??eln?1?bx?x?0?2x?x??x?x?

?a2ln?1?ax?b2ln?1?bx??a2?b2? ?lim? ??x?0ax2bx2?2?习题1—4

1??1求?lim?1??x???x??x2e?x

解:原式?limex???3?1?2xln?1???xx???limex???1?1??2?1x???0??x22???x???x2x?limex???12?1???x0?2?2?x??e?12

2 求limex?1?xsin6x3

x6x?01?x?3解:原式?lim2?0?xx66??1?x3x?0?12

?sinxf?x??03 设f?x?在x?0处可导,且lim?2?求f?0?,f????2,x?0xx??x?x3?及limx?01?f?x?x

?sinx?xf?x??解:因lim???lim2x?0x?0x??3!?o?x4??x?f?0??f??0?x?o?x??x2

x3?1?f?0?x?? ?lim故f?0???1,f??0??2

x?0f??0?x?22x3!?2

lim1?f?x?xx?0?lim1?f?0??f??0?x?o?x?xxx?0o?x?????lim?f?0????2 x?0x??4求limx?02

?xln?1?x??xex?1?1?解:原式?limx?02?xln?1?x??xe22x?1?1?x1?1???1?1x2?22?21?x?x?o?x??1?222 ?lim2x?0x2x??o?x??x?1???x??o?x??2??limx?0182x2x?o?x???14

?xo?x?n5 求lim?nn?1?n??lnn

?1????1?x??1?ln???x?xxlnxln?1?x?lime?e?x?0x?0?x?x1limx?01xn解:原式limn?1lnn1xn??1n?limx?0,而lim??e?1

0?1??1?故ln??????1?x?0?,故原式=1。

?x??x?xx6 设f?x?在x?0处可导,f?0??0,f??0??0,若af?h??bf?2h??f?0?在h?0时是比h高阶的无穷小,试确定a,b的值。

af?h??bf?2h??f?0?h解:limh?0?0

即 lima?f?0??f??0?h?o?h???b?f?0??f??0?2h?o?2h???f?0?hh?0?0

即 lim?a?b?1?f?0??f??0?h?a?2b??ao?h??bo?2h?hh?0?0

?a?b?1?0?a?2?故? ?a?2b?0b??1??7 求limn2?1?nsinn????1?? n?1?nsin1n?limx?sinx?1,利用sinx?x?x?ox4

??3x?03!x63解:原式?limn??1n22n?2?1??8求limn?e??1???

n??n??????1??2e??1??n??解:原式?limn??1n22n?lime??1?x?22x2x?0x?lime?e2xln?1?x?x?0x

?lime?exx2?x?ox?2?x?o?x??x?0?lime?ex2x2??limex?02x?ln?1?x?xx?0???2??e

2?n???1?9求limn?e?1???1?

n??n??????1x解:原式?lime?1?x?x??1?lime?e?1xln?1?x??1x?0x?0x?lime1?1xln?1?x??1x?0x

1??1?ln?1?x???1?1x?????0?e ?lime??x?0x210设f????x0?存在,求极限lim1n3n?0??f?x0?3h??3f?x0?2h??3f?x0?3h??f?x0???

12f???x0??3h??2解:f?x0?3h??f?x0??f??x0?3h?16f????x0??3h??o3??3h??

3类似可得f?x0?2h?,f?x0?h?的表达式代入化简,可将原式?f????x0??6。

习题1—5

1 列极限

1?12?????n1n① lim n??解:令xn?1?12?????1n,yn?n,利用stolz公式可得原式?2

② lim1?2?????nnn

n??解:令xn?1?22?????nn,yn?nn,利用stolz公式可得原式?0 ,a?1

1a?a2③ lim1?a?2a????nanan?2n??解:令xn?1?a?2a2?????nan,yn?nan?2,利用stolz公式可得原式?2设liman?a,求

n??

① lima1?2a2?????nann2

n??解:令yn?n2,xn?a1?2a2?????nan,则lim?n?1?an?12n???n?1??n2?12a,故原式?12a

② lim1nnn???k?1akk 解:令xn?a11a1?a22a22????annann,yn?n 原式?lim1?????nan?1?limn?1n?1?n?liman?1n??n??n???n?1n?1?n?2a

?③ lim1lnnnn???k?1akk

a11a22ann解:令yn?lnn,xn?a1a22??????

an?1an?1an?1?

1?e??n?1?ln?1??n??原式?lim1n????????annlimn??lnnn?1?limln?n?1??lnnn??④ limn1a1?1a2?????1ann??,ai?0,i?1,2,???n

1解:原式?lima1?1a2?????n1an?1an??,故原式?a


数学分析选讲刘三阳 部分习题解答(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:广东省惠州市2014届高三第一次调研考试数学理试题(word版)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: