专业的教育资料 高二数学(理科)试题参考答案
一、选择题
1-5: CABBD 6-10: BDCCD 11、12:BA 二、填空题
13. 99.5 14. 1 15. 2018 16. ①②④ 三、解答题
17.解:(Ⅰ)∵z?2?i,∴z?2?i.
∴??z2?3z?12?(2?i)2?3(2?i)?12??3?i, ∴??(?3)2?12?10;
(Ⅱ)∵z?2?i, ∴
az?bza(2?i)?b(2?i)2?z?2?(2?i) ?2(a?b)?(a?b)ii[2(a?b)?(a?b)i]?i??i2
?b?a?2(a?b)i?5?2i.
∴??b?a?5?a?b??1,
解得??a??3?2,
?b∴a,b的值为:-3,2.
18.解:f'(x)?x2?(a?1)x?a,
(Ⅰ)∵f(x)在x??13处取得极值, ∴f'(?13)?0,∴19?13(a?1)?a?0,∴a??23,
∴f'(x)?x2?52113x?3?(x?3)(x?2),令f'(x)?0,则(x?3)(x?2)?0,∴?13?x?2,
∴函数f(x)的单调递减区间为(?13,2).
(Ⅱ)∵f(x)在(0,1)内有极大值和极小值,
- 6 -
专业的教育资料 ∴f'(x)?0在(0,1)内有两不等实根,对称轴x??a?1, 2???0?a?1??1?0??∴?, 2?f'(0)?0???f'(1)?0???(a?1)2?4a?0?a?3?22或a?3?22????1?a?1即?, ???1?a?1?a?0?a?0???1?a?1?a?0∴0?a?3?22. 19.解:(Ⅰ)x?7?6?6?5?6165?142?148?125?150?6,y??146,
55b?19?21?20, 2a?146?20?6?26,
所以线性回归方程为y?20x?26, 当x?9时,y的估计值为206元;
(Ⅱ)甲乙两名同学所获得奖学金之和X的可能取值为0,300,500,600,800,1000;
P(X?0)?P(XP(XP(XP(XP(X4416??; 1515225148?300)?2???;
315452416?500)?2???;
51575111?600)???;
339214?800)?2???;
5315224?1000)???.
55250 300 500 600 800 1000 X P 16 2258 4516 751 94 154 25所以X的数学期望E(X)?600.
- 7 -
专业的教育资料 120.解:(Ⅰ)由题知4?4r(?r2?2ar)?2?r3?8ar22,
∴a?4?2?r32?8r2??r34r2.
又因r?a?2r,得328???r?324??, ∴y?2(4ar?8ar?8r2)?4(?r?4r??r2)
?24ar?16r2?20?r2
?24r?2??r3224r2?20?r?16r ?12r?(16?14?)r2(3228???r?34??). (Ⅱ)令f(r)?12r?(16?14?)r2, ∴f'(r)??12r2?(32?28?)r, 令f'(r)?0则r?338?7?,
∵
38?7??28???8?11?(8?7?)(8??)?0,
当3228???r?34??时f'(r)?0,函数f(r)为增函数. ∴r?328??时,f(r)最小. 答:当r?328??分米时,该首饰盒制作费用最低. 21.解:(Ⅰ)函数f(x)的定义域为(0,??),f'(x)?2ax?1?1x, 所以函数f(x)在点??11?1?2,f(2)??处的切线的斜率k?2a?2?1?2?3?a.
∵该切线与直线x?2y?1?0垂直,所以3?a?2,解得a??1.
- 8 -
专业的教育资料 1?2x2?x?1?(2x?1)(x?1)?∴f(x)??x?x?1?lnx,f'(x)??2x?1??,
xxx2令f'(x)?0,解得x?1.
显然当x?(0,1)时,f'(x)?0,函数f(x)单调递增;当x?(1,??)时,f'(x)?0,函数f(x)单调递减.
∴函数f(x)的极大值为f(1)??1?1?1?ln1??1,函数f(x)无极小值. (Ⅱ)f(x)?m?成立,
mm?x2在[1,??)上恒成立,等价于lnx??x?m?1?0在[1,??)上恒
xxm1mx2?x?m令g(x)?lnx??x?m?1,则g'(x)??2?1?,
xxxx2令h(x)?x2?x?m(x?1),则h(x)在[1,??)上为增函数,即h(x)?2?m, ①当m?2时,h(x)?0,即g'(x)?0,则g(x)在[1,??)上是增函数, ∴g(x)?g(1)?0,故当m?2时,lnx?m?x?m?1?0在[1,??)上恒成立. x②当m?2时,令h(x)?x?x?m?0,得x?2?1?1?4m,
2当x??1,???1?4m?1?1?4m?1?x?g'(x)?0g(x)时,,则在上单调递减,???1,??22???g(x)?g(1)?0,
因此当m?2时,lnx?m?x?m?1?0在[1,??)上不恒成立, x1?x??tcos???2?22.解:(Ⅰ)将?(t为参数,0???)消去参数t,
2?y?3?tsin???2得直线,y??31???tan??x??,即2xtan??2y?tan??3?0(0???).
222??将??x??cos?222代入??2?cos??3?0,得x?y?2x?3?0,
?y??sin?- 9 -
专业的教育资料 即曲线C的直角坐标方程为(x?1)2?y2?4.
(Ⅱ)设直线l的普通方程为y??31?k(x?),其中k?tan?,又0???,
222∴k?0,则直线l过定点M(,13), 22∵圆C的圆心C(1,0),半径r?2,CM??1?故点M在圆C的内部.
当直线l与线段CM垂直时,AB取得最小值, ∴ABmin?2AM?22?1?23. 22??1??3??0??1, ?????2??2?2223.解:(Ⅰ)∵g(x)?x?1?x?a?a?1,若g(x)?1恒成立,需a?1?1, 即a?1?1或a?1??1, 解得a?0或a??2.
(Ⅱ)∵a?1,∴当x?(?1,1)时,g(x)?a?1,
x2?2∴x?ax?3?a?1,即?x?(?1,1),a?成立,
1?x23x2?231?x?2,(?)x??23?(1?x)??2,由∵0?∴11?x1?x1?x等号成立), ∴a?23?2.
(当且仅当x?1?3又知a?1,∴a的取值范围是a?23?2.
- 10 -