微积分复习(三)及答案
一 选择题
1 设f(x)在区间[a, b]上连续,则在(a, b)内f(x)必有:( B ) (A)导函数 (B)原函数
(C)极值 (D)最大值和最小值 2 如果?f(x)dx?F(x)?c,则?f(cotx)dx? ( B )
sin2x(A)F(cotx)?c (B)?F(cotx)?c (C)F(sinx)?c (D)?F(sinx)?c 3 若
?e1b1f(lnx)dx??f(u)du, 则( A )
ax(A)a?0,b?1 (B)a?0,b?e (C)a?1,b?0 (D)a?e,b?1
x41x4f(x)dx?_____ D f(t)dt?, 则?02x4 若
?0(A)2 (B)4
(C)8 (D)16 5 若设f(x)在区间[a, b]上连续,则(A)(C)
?baf(x)dx?______10B
??100f[a?(b?a)t]dt (B)(b?a)?f[a?(b?a)t]dt f[a?(b?a)t]dt极值 (D)(b?a)?f[a?(b?a)t]dt
?10?16 设F(x)??2x3?t2dt,则F'(1)?_____ D
(A)7?2 (B)2?7 (C)2 (D)?2
7 下列函数对中是同一函数的原函数的有 A
121sinx与?cos2x (B)lnlnx与ln2x 24x12xx2(C)e与e (D)tan与?cotx?
2sinx(A)8 如果?f(x)dx?x?c,则?xf(1?x)dx?_______ D
223(A)3(1?x)?c (B)?3(1?x)?c
3232 1
(C)1(1?31x)?c (D)?(1?x)?c
332329 以下广义积分中收敛的是( ) C (A)
111dt (B)?0t?0t2dt 1(C)
?101lnt1dt dt (D)?0tt10 设lnf(x)?cosx,xf'(x)?f(x)dx?_________ A
(A)xcosx?sinx?c (B)xsinx?cosx?c (C)x(sinx?cosx)?c (D)xsinx?c 11 设方程(A)??y0etdt??sintdt?0确定y为x的函数,则
x0dy?______ A dxsinxcosx? (B) yyee(C)0 (D)不存在
12 若f(x)??f(?x),在(0,??)内f?(x)?0,f??(x)?0,则f(x)在(??,0)内(C) (A)f?(x)?0,f??(x)?0 (B)f?(x)?0,f??(x)?0 (C) f?(x)?0,f??(x)?0 (D) f?(x)?0,f??(x)?0 二 填空题
1 2 3
(2?sinx)dx??11?x2?______ ?
1?2?0?2sinxdx?_____ 4
dx??e?11?x?______ ?1
x4 若f'(e)?1?x,则f(x)?______ xlnx?c
x3cosxdx?______ 0 5 ??1/21?x41/26 limn??0x?1x2ndx?______0 1?x7
?0[df(x)]dx?____f(x)?f(0) dx2
8
x?x??21?x2dx?____ ln5
2e??19 曲线y?esinx(x?0)与x轴所围成图形的面积为____________ ?2(e?1)?x10 曲线y?x2与直线y?x和y?2x轴所围成图形的面积为____________
三 计算题 1.求ln(x?解:
222ln(x?x?1)dx?xln(x?x?1)?xdln(x?x?1)??7 6?x2?1)dx
?xln(x?x?1)??2xx?12dx?xln(x?x?1)?x?1?c22
2.求
?3?4max(1,x2,x3)dx
解:
当?4?x??1时,max(1,x2,x3)?x当-1?x?1时,max(1,x2,x3)?1 当1?x?3时,max(1,x2,x3)?x32
?
3?4max(1,x2,x3)dx?113?4?11??x2dx??1dx??x3dx?21?2?20?433.求arctan 解:
?xdx
?n??arctanxdx?xarctax
x11?x2xd?x
令x?t,dx?2tdttdx?21?tx?arctax?nc2原式?xarctanx???xarctanx?
3
4.f'(sin2x)?cos2x?tan2x,解:
0?x?1 求f(x)
设sin2x?tsin2xf'(sinx)?1?2sinx?1?sin2x t1f'(t)?1?2t???2t1?t1?t1f(x)??(?2x)dx??ln1?x?x2,1?x22
0?x?125 设f(x)是[0,?/2]上的连续函数,且f(x)?xcosx?解:
??/20f(t)dt,求f(x)(*)
设??/20f(t)dt?a,f(x)?x2cosx?a(tcost?a)dt???/22a???/2?/200tdsint?2?2
a
/2?[t2sint]??2?00tsintdt??2a
??24?2??2a?2?8 ∴ a?
2(2??) 6 计算解:
3/2?dxx?x21/2
?3/2dxx?x21/2??dx1dxx?x2??11/2??3/2dx1x2?x??
13/21/211()2?(x?)222dx11(x?)2?()222
12123/2?arcsin[2(x?1/2)]1?[lnx?1/2?(x?)?()]11/222?
4
?2?ln[1?3?]?ln2??ln[2?3]22
7 设f(2x?1)?xex,求解:
?53f(t)dt
t?2x?1,?
53222xf(t)dt?2?1xexdx?2[xex]1?2?1edx
?2e28 由曲线xy?a (a?0)与直线x?a, x?2a 及y?0围成一平面图形。 (a) 求此图形绕(b) 求此图形绕
x轴旋转所成旋转体体积
y轴旋转所成旋转体体积
2aa212a12V?解:(a) a??()dx??a(?)a??a
axx22aa2 (b) Vb?2??xdx?2?a
ax
9 求连续函数f(x),使它满足:
?10f(tx)dt?f(x)?xsinx,f(0)?0.
1xf(u)du ?0x解:设u?tx,则t=0时,u=0;t=1时,u=x
∴f(x)?xsinx? ∴
?10f(tx)dt??x0f(u)du?xf(x)?x2sinx
2两边对x求导: f(x)?f(x)?xf'(x)?2xsinx?xcosx 得:f'(x)??(2sinx?xcosx) 两边在[0,x]积分,
f(x)?f(0)???(2sinx?xcosx)dx??(xsinx?cosx?1)?cosx?xsinx?1
0x ∴f(x)?cosx?xsinx?1
10 设f(x)在[a,b]上连续,且f(x)?0,x?[a,b]。
F(x)??f(t)dt??axxb1dt,x?[a,b] f(t)证明:方程F(x)?0在区间[a,b]上有且只有一个根 证明:
5