an?an?1?2?3n?1,上述各式两边分别相加得
an?a1?2?3?2?3???2?3
例2.解:an?12n?13(1?3n?1)?2??3n?3
1?3an?1n?1,故累乘得 an?1,n?an?1nnanan?1an?2aan?1n?2n?321a1???....?3?2????....??,?n?an?1an?2an?3a2a1nn?1n?232a1n1n
?an?变式训练 解:an?1?a3n?13n?1,故累乘得 an,n?1?an3n?23n?2anan?1an?2aa3n?43n?752a2???....?3?2???....??,?n?an?1an?2an?3a2a13n?13n?485a13n?163n?1
?an?例3解:令bn?列,且
11,则bn?1?,得bn?1?bn?1,数列?bn?是公差为1的等差数1?an1?an?1b1?111,?an?1? ?1,∴bn?b1?(n?1)d?n?1?ann1?a1变式训练 解:∵
an?1?an?anan?1,同除以anan?1得
111??1,令bn?,则anan?1anbn?1?11?1, ,得bn?bn?1?1,数列?bn?是公差为1的等差数列,且b1?a1an?111,?an?2
nan∴bn?n?
1111( an+q),展开得an?1?an?q,系数比较得?q?1,222211求出q??2,原式可配成(an+1-2)=( an-2),构造公比为的等比数列?an?2?,
2251??an?2?是以a1?2??为首项,为公比的等比数列。
22例4.解:设原式可配成( (an+1+q)=
6
?an?2??变式训练
55 即 .a???2. n2n2nan?1an??1,即bn?1?bn?1,∴数列?bn?是nn?122a公差为1的等差数列,且b1?1,∴bn?n,即bn?nn?n,an?n?2n?1 ?12解:∵an?1?2an?2n,两边同除以2n,得
例5.解:(1)a1?S1?22,an?Sn?Sn?1??8n?29,当n=1时,a1?22??8?1?29 ?an???22(n?1)??8n?29(n?2)
(2)a10+a11+a12+…+a20=S20?S10??1445 (3)Sn=-4n2+25n+1为二次函数,顶点横坐标为值,此时an?5。 变式训练
???S1 (n=1),?-8 (n=1),
?选B. an==? ?Sn-Sn-1 (n≥2),???-10+2n (n≥2).
25,∵n∈N*,∴n=3时,Sn取得最大8
∵n=1时适合an=2n-10,∴an=2n-10.∵5
及时突破
1.选A.由an+1 =3Sn,得an =3Sn-1(n ≥ 2),相减得an+1-an =3(Sn-Sn-1)= 3an,则an+1=4an
(n ≥ 2),a1=1,a2=3,则a6= a2·44=3×44. 2.解:令bn?an,则bn?1?bn?1,数列?bn?是公差为1的等差数列,且b1?a1?3,
?bn?n?3?1?an,?an?(n?3?1)2
3.【答案】
21解:∵an?1?an?2n,得a2?a1?2?1,a3?a2?2?2,??, 2
an?an?1?2(n?1),上述各式两边分别相加得 an?a1?2?1?2?2???2(n?1)?2??an?n2?n?33,?(1?n?1)(n?1)?n2?n,
2an3321?n??1,∴由均值不等式知当n?6时有最小值。 nn24.解:∵an?3an?1?2,?an?1?3(an?1?1),数列?an?1?是公比3,首项为2的等比数列,
7
∴an?1?2?3n?1,即an?2?3n?1?1
5.解:(1)由an = a1 +(n-1)d及a1=5,a10=-9得
{a1?2d?5a1?9d??9解得
{d??2a1?9
数列{an}的通项公式为an=11-2n。
(2)由(1) 知Sn=na1+
n(n?1)。
d=10n-n2
2因为Sn=-(n-5)2+25. 所以n=5时,Sn取得最大值。
课时训练
1.选C.∵an?Sn?Sn?1??2n?1,∴数列?an?是等差数列.
2.选C.从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6n(n+1)
个;n=4时,有10个;… ∴an=1+2+3+4+…+n=. 答案:C
2
?a5?a1q4?822q?5q?2?0, 3.选C.?a1a9?a5?64,?a5?8,∴?3,两式相除得5?a1q?a1q?202?q?1或q?2,?an?a5qn?5=2n?2或28?n 24.选B.当an?1?an(n?1,2,?)时,∵an?an,∴an?1?an,∴?an?为递增数列.
当?an?为递增数列时,若该数列为?2,0,1,则由a2?a1不成立,即知:
an?1?an(n?1,2,?)不一定成立.
故综上知,“an?1?an(n?1,2,?)”是“?an?为递增数列”的充分不必要条件.故选B. 5.选C.令bn?an2,构造等差数列.
6.选B.由已知知bn?2n?8,an?1?an?2n?8,由叠加法
(a2?a1)?(a3?a2)???(a8?a7)??6??4??2?0?2?4?6?0?a8?a1?37.解:∵an?1?an?8.答:
11131??,累加可得∴an??
n(n?1)nn?12nn1?612a3?a.解:∵a1a2a3?an?n,∴aa1216?n??1?,两式相除得an?(2n2 ),
n?1∴a3?a5?61 168
11111,则aa?a?a???an为其前n项和,即Sn?2n?5, n1232n222232n1∴bn?Sn?Sn?1?2,即bn?nan?2,?an?2n?1
2111110.解: (Ⅰ)由S1?(a1?1),得a1?(a1?1) ∴a1?? 又S2?(a2?1),即
333211a1?a2?(a2?1),得a2?.
3411(Ⅱ)当n>1时,an?Sn?Sn?1?(an?1)?(an?1?1),
33 9.解:令bn? 得
an111??,所以?an?是首项?,公比为?的等比数列. an?1222122,Sn?nan,① ∴Sn?1?(n?1)an?1,② 22211.解:由a1?①-②得:an?Sn?Sn?1?nan?(n?1)an?1,即,
ann?1??n?2?, an?1n?1∵
n?1n?22121anaaaa,∴an?. ?????n?n?1?3?2?a1an?1an?2a2a1n?1n43n(n?1)n(n?1)
12.解:(I)∵an?2?3an?1?2an(n?N*).∴an?2?an?1?2an?1?2an?2(an?1?an) 即
an?2?an?1?2,∴数列?an?1?an?是公比为2,首项为2的等比数列.
an?1?an(II)an?1?an=2n,由累加法得an?(an?an?1)?(an?1?an?2)???(a2?a1)?a1
?2n?1?2n?21?2n???2?1??2n?1
1?2
9