一、选择题
2 题号 1
A 答案 B
3 A
4 B
5 B
6 D
7 A
8 C
9 C
10 D
11 A
12 B
1.A?{x|x?2或x??2},e.选或x?3},∴A∩eUB?{x|x?1UB={x<-2或x≥3}B.
2.∵P假q为真,∴p或q为真,p且q为假 ,非p为真.选A. 3.∵a∥b,∴sinα=3k,cosα=4k,∴tan??3,选A. 44.由题意,设a1?a2?2,a3?a2?2,a4?a2?4,∴(a2?2)(a2?4)?(a2?2)2,解得
a2??6,选B.
5.不等式等价于??x?01,解得x?且x?0.选B.
2?1?2x?0y?2sin(x?6.集合A中只要含有1或2 即可满足题意,此时A∩B为{1}或Φ.选D. 7
.
∵
?)cos(x?)44?=
2sin(x?)sin(?x)?1?cos(2x?)?1?sin2x,
442∴根据题意作出函数图象即得.选A.
8.由?ABC的内角满足tanA?sinA?0,易得cosA<0,∴A为钝角,取A????2?代入3sinA?cosA?0,显然满足.选C.
9.∵
f(x1)f(x2),可视为曲线上两点(x1,f(x1))、(x2,f(x2))的斜率,作图易得x1x2f(x1)f(x2)?.选C. x1x210.∵f(x)?x??x?,f(0.2)=0.2,f(-0.2)=-0.2+1=0.8,显然f(0.2)≠f(-0.2),∴
f(x)?x??x?不是偶函数.选D.
11.由题意,易求得a?153,b?,c?,∴a+b+c=1.选A. 2161611?=3.选B. xy12.取△ABC为正三角形易得二、填空题
13.(2,1,-3,2) ;14.m=0或m≥1 ; 15. (???2,0)?(,?); 16.[-1,]; 332当前第 6 页共10页
13.注:本题为开放题,只要写出一个正确的即可,如(2,1,-3,2).
14.提示 若①为真,②为假,则m?0且m?1,∴m?1;若②为真,①为假,则m<0且0 ?sinxf(x)???cosx??sinx(0?x?)?4?sinx?cosx??5???cosx(?x?), sinx?cosx?445??sinx(?x?2?)?4?2]. 2作出图象易得函数的值域为[-1,三、解答题 ?1??1?)?0等价于?17.解:(1)log3(1?x?2?1???解得x??2.????6’ 1?0,x?2 ??????????3’ 1?1x?2 方程y?2y?m?3?0的判别式??4?4(m?3)?4(4?m).????8’ 22 ∵ m??2,∴m?4.即4?m?0. 2222 ∴ ??0. 由此得方程y?2y?m?3?0无实根.???????????????12’ 18.解: f(x)??3msin2x?mcos2x?m?n??2msin(2x?22?6)?m?n??2’ ??1????7?????x??0,??2x???,??sin(2x?)???,1???????????4’ 6?2?6?66??2?当m>0时,f(x)max??2m(?)?m?n?4,f(x)min??m?n??5 解得m?3,n??2,????????????????????????6’ 从而,g(x)?3sinx?4cosx?5sin(x??) (x?R), T=2?,最大值为5,最小值为-5;??????????????????8’ 当m<0时, 解得m??3,n?1,??????????????????10’ 当前第 7 页共10页 12从而,g(x)??3sinx?2cosx?13sin(x??),T=2?,最大值为13, 最小值为?13.??????????????????????????12’ 19.解(1)已知向量OA?(3,?4),OB?(6,?3),OC?(5?m,?(3?m)) 若点A、B、C能构成三角形,则这三点不共线, ?AB?(3,1),AC?(2?m,1?m),故知3(1?m)?2?m. ∴实数m?1时,满足的条件.??????????????????6’ 2(2)若△ABC为直角三角形,且∠A为直角,则AB?AC, ∴3(2?m)?(1?m)?0,解得m?7.???????????????12’ 4?1?3?k?k?2,?x?3?2??3’ ,m?120.解(1)由题意可知当m?0时,x?1(万件), 每件产品的销售价格为1.5?∴2004年的利润y?x?[1.5?8?16x(元), x8?16x2]?(8?16x?m)?4?8x?m?4?8(3?)?m xm?1 ??[ (2)?m?0时,16?(m?1)]?29m?1(m?0).??????????6’ 16?(m?1)?216?8, m?1?y??8?29?21,当且仅当16?m?1?m?3(万元)时,ymax?21(万元)??11’ m?1答:(略)???????????????????????????????12’ *21.解 (1)当n?N时有:Sn?2an?3n,?Sn?1?2an?1?3(n?1), 两式相减得:an?1?2an?1?2an?3,?an?1?2an?3,??????????2’ ∴an?1?3?2(an?3),又a1?S1?2a1?3,∴ a1?3,a1?3?6?0. ∴数列{an?3}是首项6,公比为2的等比数列. 从而an?3?6?2n?1,∴a1?3?2?3.??????????????????6’ n(2)假设数列{an}中存在三项ar,as,at,(r?s?t),它们可以构成等差数列, ar?as?at,?只能是ar?at?2as,??????????????????8’ ?(3?2r?3)?(3?2t?3)?2(3?2s?3), 当前第 8 页共10页 即2?2?2rts?1.∴1?2t?r?2s?1?r.(*)?????????????????10’ ?r?s?t,r、s、t均为正整数, ∴(*)式左边为奇数右边为偶数,不可能成立. 因此数列{an}中不存在可以构成等差数列的三项.????????????????????????????????12’ 22.解(1)证明:f(x)?2?f(2a?x)?x?1?a2a?x?1?a?2? a?xa?2a?xx?1?aa?x?1x?1?a?2a?2x?a?x?1??2???0. a?xx?aa?x?(a?x)?11??1? a?xa?x∴结论成立 ??????????????????????????????4’ (2)证明:f(x)?当a?11?x?a?1时,?a?1??x??a?, 2211 ?2???1,?1?a?x??, a?x21??2. a?x 即f(x)值域为[?3,?2].????????????????????????8’ ∴?3??1?(3)g(x)?x2?|x?1?a|(x?a) ①当x?a?1且x?a时,g(x)?x?x?1?a?(x?如果a?1??2123)??a. 2411 即a?时,则函数在[a?1,a)和(a,??)上单调递增, 22∴g(x)min?g(a?1)?(a?1)2 . 11113如果a?1??即当a?且a??时,g(x)min?g(?)??a. 222241时,g(x)最小值不存在.????????????????????10’ 21252②当x?a?1时g(x)?x?x?1?a?(x?)?a? , 241315如果a?1?即a?时g(x)min?g()?a?. 2224当a??如果a?1?即a?时,g(x)在(??,a?1)上为减函数g(x)min?g(a?1)?(a?1)2. 当a?时,(a?1)2?(a?)?(a?)2?0. 1232353242131当a?时,(a?1)2?(?a)?(a?)2?0.?????????????????12’ 24211313且a?时, g(x)最小值是?a;当?a?时, g(x)最小值224223152是(a?1) ;当a?时, g(x)最小值为a?;当a??时, g(x)最小值不存在. 224综合得:当a? ??????????????????14’ 当前第 9 页共10页 当前第 10 页共10页