18.解:(1) 由已知得,f(x)?x3?32ax?b, 由f?(x)?0,得x1?0,x2?a. 2∵x?[?1, 1],1?a?2,
∴ 当x?[?1, 0)时,f?(x)?0,f(x)递增;
当x?(0, 1]时,f?(x)?0,f(x) 递减.
∴ f(x)在区间[?1, 1]上的最大值为f(0)?b,∴b?1.
3333又f(1)?1?a?1?2?a,f(?1)??1?a?1??a,∴ f(?1)?f(1).
2222443由题意得f(?1)??2,即?a??2,得a?. 故a?,b?1为所求.
332(2) 由 (1) 得f(x)?x3?2x2?1,f?(x)?3x2?4x,点P(2, 1)在曲线f(x)上.
当切点为P(2, 1)时,切线l的斜率k?f?(x)|x?2?4, ∴ l的方程为y?1?4(x?2),即4x?y?7?0.
22x22x(3) F(x)?(3x?3ax?6x?1)?e???3x?3(a?2)x?1???e.
2x22x?3x?3(a?2)x?1?e∴ F?(x)??6x?3(a?2)??e?2???
22x?[6x?6(a?3)x?8?3a]?e.
二次函数y?6x2?6(a?3)x?8?3a的判别式为
2??36(a?3)2?24(8?3a)?12(3a2?12a?11)?12?3(a?2)?1???,令
??0,
得
:
(a?2?21)?33?a,??23令
33?2?0,.得
a?2?33,或a?2?. 332x∵e?0,1?a?2,
∴当2-3?a?2时,F?(x)?0,函数F(x)为单调递增,极值点个数为0; 33当1?a?2?时,此时方程F?(x)?0有两个不相等的实数根,
3根据极值点的定义,可知函数F(x)有两个极值点.
19.解: AD?2 PA?AD
(1) PA?2 ?AD?AB ?AD⊥面PAB ············ 4分 PD?22 PAAB?A
(2) AD∥BC?∠PCB(或其补角)为异面直线PC与AD所成角
?tan?PCB? 77??PCB?arctan ··············· 8分 22(3) 作PM⊥AB于M,MO⊥BD于O
AD?PAB???面PAB?面ABCD于AB AD?面ABCD?PM⊥AB ?PM?面ABCD PM?面PAB MO⊥BD
PO?BD 10分 ? ??POM为二面角P—BD—A的平面角 ·········
MO?BD MO?41313PM?3?PMO?90? ?tan?POM?39 ················· 12分 420.解:(1) ∵ |MN|?8 ∴ a = 4
a2211a2又∵ | PM | MF 得?a?2())即ee??11??0?e??e1(舍去) )又?|PM|| ?= 22 |MF||得2(aa??cc即22ee2??330?c?或e或?1(舍去322c?c?2b2?a2?c2?12x2y2?椭圆的标准方程为??11612
(2) 当AB的斜率为0时,显然?AFM??BFN?0.满足题意
当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x?my?8, 代入椭圆方程整理得 (3m?4)y?48my?144?0
2248m144y?y?123m2?43m2?4
y1y2y1y22my1y2?6(y1?y2)?kAF?kBF??????0x1?2x2?2my1?6my2?6(my1?6)(my2?6)
?kAF?kBF?0,从而?AFM??BFN.
22则 ??(48m)?4?144(3m?4),y1?y2?综上可知:恒有?AFM??BFN ·················· 9分
2(3) S?ABF?S?PBF?S?PAF?1|PF|?|y2?y1|?72m?4
23m2?472m2?4??3(m2?4)?16723m?4?216m2?4?7223?16?33
当且仅当3m2?4?16即m2?28(此时适合△>0的条件)取得等号.
3m2?4
∴三角形ABF面积的最大值是33 ·················· 13分
21.解:(1) a1?1,a2?3,a3?7
事实上,要将n个圆盘全部转移到C柱上,只需先将上面n?1个圆盘转移到B柱上,需要an?1次转移,然后将最大的那个圆盘转移到C柱上,需要一次转移,再将B柱上的n?1个圆盘转移到C柱上,需要an?1次转移,所以有an?2an?1?1 则an?1?2(an?1?1)?an?1?2n,所以an?2n?1 (2) bn?an?1?2n 则Sn?1bb??ij2[(b1?b2?1?i?j?n2?bn)2?(b12?b2?2?bn)]
1 ?[(2?22??2n)2?(22?24?26?24 ?(2n?1)(2n?1?1)(n?N*)
3SSS2n?1(3) 令cn?13,则当n?2时
S2S4S2n14?22n)]?[(2n?1?2)2?(4n?1)]
23S1S3S2n?1(21?1)(22?1)(23?1)(24?1)?2??cn?(2?1)(23?1)(24?1)(25?1)S2S4S2n(22n?1?1)(22n?1)?2n (2?1)(22n?1?1)21?111?2n?1?? ?2n?12?12?14又c1?122n?1?14?1111?2n?1?cn?1?()n?1c1 424?14114??,所以对一切n?N*有: 23?1721SSS2n?1S1S1S3???13?c1?c2?c3??cn S2S2S4S2S4S2n11?()n1114)?4?4?(1)n?4 ?c1?c1?()2c1??()n?1c1?c1(144421214211?4另方面cn?0恒成立,所以对一切n?N*有 S1S1S3??S2S2S4?S1S3S2S4S2n?1?c1?c2?c3?S2n?S1S3S2S4?cn?c1?1 7综上所述有:
1S1S1S3???7S2S2S4S2n?14?(n?N*) S2n21