徐州师范大学本科生毕业设计 基于模糊PID的电阻炉温度自动控制系统
础来分析和设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和提示了系统的内部状态和性能。基于现代控制理论的设计方案是建立在对系统内部模型的描述之上的。它是通过数学方法对控制系统进行分析综合。控制规律的确定是通过极小化预先确定的性能指标函数或使控制系统满足希望的响应而推导出来的。此类设计方案主要有:系统辨识、最优控制、自校正控制等。这类设计方案适用范围广,适合于多输入多输出系统、某些非线性时变系统和一些具有随机扰动的系统。该方法理论严谨,控制系统的稳定性问题可以严格证明,性能指标能定量分析,得到的控制品质较好。但这类方法需要知道精确的被控对象的数学模型形式。
第三类: 智能控制方案
智能控制方案是一类无需人的干预就能够针对控制对象的状态自动地调节控制规律以实现控制目标的控制策略。它避开了建立精确的数学模型和用常规控制理论进行定量计算与分析的困难性。它实质仁是一种无模型控制方案,即在不需要知道对象精确模型的情况下,通过自身的调节作用,使实际响应曲线逼近理想响应曲线。
智能控制系统有以下一些特点
(1)智能控制系统一般具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程。它适用于含有复杂性、不完全性、模糊性、不确定性和不存在己知算法的生产过程。
(2)智能控制具有信息处理和决策机构,它实际上是对人神经结构或专家决策机构的一种模仿。
(3)智能控制器具有非线性。这是因为人的思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性的特点。
(4)智能控制器具有变结构的特点。
(5)智能控制器具有总体自寻优的特点。智能控制方案主要包括模糊控制、神经网络和遗传算法控制等。
常用的温度控制电路根据应用场合和要求的性能指标有所不同。除了传统的PID控制方法,近几年来快速发展的是将模糊控制、神经网络、遗传算法等智能控制方法应用于温控系统,包括智能控制与PID控制相结合及这些智能控制之间的结合。具体有如下一些方法:
2
徐州师范大学本科生毕业设计 基于模糊PID的电阻炉温度自动控制系统
(1)模糊控制
模糊控制是基于模糊逻辑的描述一个过程的控制算法,它不需要被控对象的精确模型,仅依赖于操作人员的经验和直觉判断,容易应用。模糊温控的实现过程为:①将温控对象的偏差和偏差率以及输出量划分为不同的模糊值,建立规则,将这些模糊规则写成模糊条件语句,形成模糊模型。②根据模糊查询表,形成模糊控制算法。③对输入量的精确值模糊化,经数学处理输入计算机,计算机由模糊规则推理做出模糊决策,求出相应的控制量,变成精确值去驱动执行机构,调整输入,达到调节温度,使其稳定的目的。
(2)神经网络与PID的结合
神经网络是一种采用数理模型的方法模拟生物神经细胞结构及对信息的记忆和处理而构成的信息处理方法。人工神经网络以其高度的非线性映射、自组织、自学习和联想记忆等功能,可对复杂的非线性系统建模。该方法响应速度快,抗千扰能力强、算法简单,且易于用硬件和软件实现。在温度控制系统中,将温度的影响因素作为网络的输入,将其输出作为PID控制器的参数,以实验数据作为样本,在微机上反复迭代,自我完善与修正,直至系统收敛,得到网络权值,达到自整定PID控制器参数的目的,也就是神经网络整定PID参数的方法。
(4)模糊控制与PID的结合
具体结合形式有多种,主要是Fuzzy-PID复合控制和模糊整定PID参数的方法。①Fuzzy-PID复合控制:当偏差较大时采用模糊控制,响应速度快,动态性能好;偏差较小时采用PID控制,使具有好的静态性能。是一种模糊控制和PID控制的分阶段切换控制方法。②模糊整定PID参数的方法:根据偏差和偏差变化率,由模糊推理来调整PID参数,也就是一种以模糊规则调节PID参数的自适应控制方法。
(5)模糊控制与神经网络的结合
模糊控制所基于的经验不易获得,一成不变的控制规则也很难适应不同被控对象的要求。所以应使模糊控制向着自适应的方向发展。基于这样的要求,可以利用神经网络的来修正偏差和偏差变化率的比例系数,达到优化模糊控制器的作用,从而进一步改进实时控制的效果,有强的鲁棒性和适应能力。
神经网络和模糊控制都属于智能控制方法,它们与PID控制结合,适应温控系统非线性、干扰多、大滞后、时变等特点。模糊控制特别适应于大惯性和纯滞
3
徐州师范大学本科生毕业设计 基于模糊PID的电阻炉温度自动控制系统
后的系统,无须知道系统的精确信息。
1.3 本文的工作
基于以上所述日前国内外的温控方法的各自特点,以及温度这一物理参数变化缓慢,大惯性和大滞后的特点,本论文考虑采用模糊控制与PID控制相结合的参数模糊自整定PID控制方法。
本文首先介绍常规PID控制,模糊控制和自适应模糊PID控制的基础,然后对电阻炉温度这一控制对象,选择了纯PID控制、纯模糊控制和参数模糊自整定PID控制三种控制方案,并给出了仿真与比较。
4
徐州师范大学本科生毕业设计 基于模糊PID的电阻炉温度自动控制系统
2 模糊PID控制基础
2.1 常规PID控制 2.1.1 模拟PID控制
PID控制是偏差比例(P)、偏差积分(I)、偏差微分(D)控制的简称。在模拟控制系统中,常规模拟PID控制系统原理框图如图2.1所示。系统由模拟PID控制(虚框内部分)和被控对象组成。
积分 被控对象 比例 -
图2.1 模拟PID控制器系统框图 微分 PID控制器是一种线性控制器,它根据给定值r (t)与实际输出值y (t)构成偏差:
e(t)?r(t)?y(t) (2.1)
将偏差比例、积分和微分控制,通过线性组合构成控制量,对被控对象进行控制,故称PID控制器。其控制规律为
1de(t) u(t)?KP[e(t)??e(t)dt?TD] (2.2)
TI0dt其传递函数形式为:
G(S)?U(S)1?KP(1??TDS) (2.3) E(S)TISt式中: KP----为比例系数;
TI-----为积分时间常数; TD-----为微分时间常数
1、比例控制(P)
在比例调节器中,调节器的输出信号u与偏差信号e成正比例,即
u?KPe (2.4)
5
徐州师范大学本科生毕业设计 基于模糊PID的电阻炉温度自动控制系统
其中KP为比例系数。比例调节即及时成比例地反映控制系统的偏差信号e,偏差一旦产生,控制器立即产生控制作用,以减少偏差。其特点是简单、快速,对于具有自平衡性的控制对象可能产生静差(自平衡性是指系统阶跃响应终值为一有限值);而对于带有滞后的系统,可能产生振荡,系统的动态特性也随之降低[1]。
2、积分调节(I)
在积分调节中,调节器的输出信号u的变化速度du /dt与偏差信号e成正比,即:
u?1TI?edt (2.5)
0t其中:TI称为积分时间常数可见偏差一旦产生,控制信号不断增大,偏差信号消失后,控制信号保持原值,显然,在已知TI为常数的情况下,控制信号为常数当且仅当e=0,即对于一个带积分作用的控制器而言,如果它能够使闭环系统达到内稳,并存在一个稳定状态,则此时对设定值r的跟踪必然是无静差的。积分调节主要用于提高系统的抗干扰能力,消除静差,提高系统的无差度。其特点是,它相当于滞后校正环节,因此如相位滞后,使系统的稳定性变差。积分作用虽然可以消除静差,但不能及时克服静差,偏差信号产生后有滞后现象,使调节过程缓慢,超调量变大,并可能产生振荡。
3、微分调节(D)
在微分调节器中,调节器的输出u与被调量或其偏差对于时间的导数成正比,即
u?TDdedrdy?TD(?) (2.6) dtdtdt可见微分作用输出只与偏差变化有关,偏差无变化就无控制信号输出,所以不能消除静差。调节器中增加微分作用相当于使控制输出超前了TD时间,TD为零时,相当于没有微分作用。其特点是,针对被控对象的大惯性改善动态特性,它能给出响应过程提前制动的减速信号,相当于其具有某种程度的预见性。它有助于减小超调,克服振荡,使系统趋于稳定,同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。
2.1.2 数字PID控制
6