17.(Ⅰ)证明:连接B1C,设B1C与BC1相交于点O,连接OD, ∵四边形BCC1B1是平行四边形,∴点O为B1C的中点. ∵D为AC的中点,∴OD为△AB1C的中位线, ∴OD∥AB1
∵OD?平面BC1D,AB1?平面BC1D, ∴AB1∥平面BC1D
(Ⅱ)解:依题意知,AB?BB1?2, ∵AA1?平面ABC,AA1?平面AA1C1C,
∴平面ABC?平面AA1C1C,且平面ABC?平面AAC11C?AC. 作BE?AC,垂足为E,则BE?平面AA1C1C, 设BC?a,在Rt△ABC中,BE?AB?BC2a?,
2AC4?a11BC?3. ∴四棱锥B?AAC?(AC11D体积V?11?AD)?AA1?BE?a?3,即
32∵AB?BC,AB?BB1,BC?BB1?B,BC?平面BB1C1C,BB1?平面BB1C1C, ∴AB?平面BB1C1C,即A1B1?平面BB1C1C.以点B1为坐标原点,分别以B1C1,B1B,B1A1所在直线为x轴,y轴和z轴,建立空间直角坐标系B1?xyz.
?3?1?. 0),C1(3,2,2),A1(0,0,0),A(0,0,2),D?,2,则B(0,2,?2??3?0,1?. ∴BC1?(3,?2,0),BD??,?2??设平面BC1D的法向量为n?(x,y,z),
?3x?2y?0,????????????由n?BC1?0及n?BD?0,得?3
x?z?0,??2?令x?2,得y?3,z??3.故平面BC1D的一个法向量为n?(2,3,?3), ?????又AC0,?2) 11?(3,????????????AC628611?n???. cos?ACn??????11,143|AC11||n|∴直线AC11与平面BDC1所成的正弦值为6286. 143????(Ⅲ)平面BC1C的一个法向量为AB?(0,0,?2),平面BC1D的一个法向量为?n?(2,3,?3)
??????????n?AB2?0?0?3?(?2)?(?3)3??∴cos(n,AB)????? ?|n||AB|2?2222∴二面角C?BC1?D的正弦值为286. 22x218.解:(Ⅰ)?y2?1
30),设A(x1,y1),B(x2,y2),直线l方程为y?k(x?1),代入(Ⅱ)假设存在,设P(m,椭圆方程,得(1?3k2)x2?6k2x?3k2?3?0,
6k23k2?3因此x1?x2?,x1x2?,
1?3k21?3k2由?MPA??MPB得kPA?kPB?0,即∴(x1?m)y2?(x2?m)y1?0
∴(x1?m)k(x2?1)?(x2?m)k(x1?1)?0
由于对任意k恒成立,因此(x1?m)(x2?1)?(x2?m)(x1?1)?0 ∴2x1x2?(m?1)(x1?x2)?2m?0恒成立
y1y2??0, x1?mx2?m3k2?36k2∴2??(m?1)?2m?0恒成立
1?3k21?3k22m?6即?0恒成立,因此m?3 21?3k0)满足题意. 综上,存在点P(3,19.解:(Ⅰ)依题意点Pn的坐标为(xn,yn?1), ∴yn?1?4xn?n?4xn?1∴xn?1?xn?n
∴xn?xn?1?n?1?xn?2?(n?2)?(n?1)???x1?1?2???(n?1)
?n(n?1)?1. 2cn?15?4n?55?4n?553?5n???, (Ⅱ)∵cn?n?2,所以:
2?(4n?1)cn8?4n?28?4n?885555∴当n≥2时,cn?cn?1?()2cn?2???()n?1c1?()n,
888855555∴T2n?1?c1?c2???c2n?1≤?()2???()2n?1??[1?()2n?1](当n?1时取“?”).
88838n(n?1), 2dndn?1dd2d3dd2d3由1?2?3???n?2n?1知1?2?3???n?2(n?1)?1(n≥2) 22222222?1(Ⅲ)∵an?xn?1?xn?n,∴An?∴
n?1?2,dnn≥2d?2(),而,所以可得, d??2?n?11nn2n≥2?2,于是Bn?d1?d2?d3???dn?2?23?24???2n?1 ?2?22?23?24???2n?1?4
2(2n?1?1)??4?2n?2?6.
2?1B?2∴n?2n?2
4B?2n(n?1); ?2n?2?n24B?2n(n?1)当n?3时,An? ?2n?2?n24当n?1,2时,An?012n?1n当n≥4时,2n?2?Cn?Cn?Cn???Cn?Cn?2
?C?C???C1n2nn?1nB?2n(n?1)n2?3nn(n?1)∴当n≥4时,An?n ?n??n??42222), 20.解:(Ⅰ)f(x)?ex?x?1,f(0)?2因此切点为(0,f?(x)?ex?1,因此f?(0)?e0?1?0,因此切线为y?2.
(Ⅱ)f?(x)?ex?a a≤0时f(x)在R单增,
a?0时f(x)在(??,lna)单减,(lna,??)单增.
lna)单减,(lna,??)单增, (Ⅲ)由(Ⅱ)可知a?0,此时f(x)在在(??,设x1?x2而f(0)?1?a?0,因此0?x1?lna?x2
ex1ex2本题即证(x1?1)(x2?1)?1,而e?a(x?1),∴x1?1?,x2?1?.
aax即证ex1?x2?a2,即证x1?x2?2lna,
设F(x)?f(x)?f(2lna?x)?ex?ax?e2lna?x?a(2lna?x)
a2?e?2ax?x?2alna(x?0)
exa2??)单增,由于0?x1?lna?x2可得F?(x)?e?2a?x≥0因此F(x)在(0,exF(x1)?F(lna)?0即f(x1)?f(2lna?x1),
由于f(x1)?f(x2)因此f(x2)?f(2lna?x1) ??)单增, ∵x2,2lna?x1?lna,f(x)在(lna,∴x2?2lna?x1,∴x1?x2?2lna, ∴x1x2?x1?x2.