11.3.2 多边形的内角和
探索多边形的内角和公式及外角和,会利用多边形的内角和公式解决问题.
重点:掌握多边形的内角和公式. 难点:探索多边形的内角和公式.
一、自学指导
自学1:自学课本P21-22页,掌握多边形内角和公式的推导方法,完成下列填空.(5分钟)
填写下列表格:
多边形 一个顶点可引的 对角线条数 所引对角线分成 三角形的个数 三角形 四边形 五边形 六边形 ? n边形 0 1 1 2 2 3 3 4 ? ? n-3 n-2 总结归纳:三角形的内角和为180度;任意四边形的内角和为360度;任意五边形的内角和等于540度;六边形的内角和等于720度;n边形的内角和等于(n-2)2180°;多边形的边数每增加一条,那么它的内角和就增加180°.
点拨精讲:多边形可分成若干个三角形,将多边形内角和转化成三角形知识(如图1,2).
自学2:自学课本P22-23例1,例2和探究,掌握多边形外角和应用.(5分钟)
如图3,根据前面三角形的有关知识,探索在每个五边形顶点处各取一个外角,这些外角的和叫做五边形的外角和,五边形的外角和等于360度,六边形的外角和是360度.
总结归纳:n边形的外角和是360°.
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 1.课本P24页练习题1,2,3.
2.七边形的内角和900°,十边形的内角和是1440°;如果一个多边形的内角和等于1260°,那么它是九边形.
3.已知四边形ABCD中,∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,则∠C=108°. 4.求出正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角的度数.
小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 (1)一个多边形的内角和是外角和的一半,它是几边形? (2)一个多边形的内角和是外角和的2倍,它是几边形?
1
解:(1)设它是n边形,则有180°2(n-2)=3360°,∴n=3.
2(2)设它是n边形,则有180°2(n-2)=23360°,∴n=6.
探究2 如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB与DE有怎样的位置关系?BC与FE有这种关系吗?
解:结论:AB∥DE,BC∥FE. 证明:(略)
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5
分钟)
1.一个多边形的每个内角都等于150°,则它的边数为12.
2.一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?
3.已知一个多边形,它的内角和等于五边形的内角和的2倍,求这个多边形的边数.
解:设这个边多形的边数为n,则有180°(n-2)=23180°3(5-2),∴n=8.
(3分钟)1.已知多边形的边数可以求出其内角和,根据其内角
和也可以求出其边数.
2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识.
(学生总结本堂课的收获与困惑)(2分钟) (10分钟)
第十二章 全等三角形
12.1 全等三角形
1.知道什么是全等形、全等三角形及全等三角形的对应元素. 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等. 3.能熟练找出两个全等三角形的对应角、对应边.
重点:掌握全等三角形的对应元素和性质的应用. 难点:全等三角形性质的应用.
一、自学指导
自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟)
总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的对应边相等,全等三角形的对应角相等.
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟) 1.下列图形中的全等图形是d与g,e与h.
2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.
,第2题图),第3题图)
3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO=BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.
点拨精讲:通常把对应顶点的字母写在对应的位置上.
4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.
点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.
小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟) 探究1 如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?
点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.
解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.
②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC所在直线向下翻折得到的.
③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.
探究2 如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.
(1)求证:BE=CF,AC∥DF;
(2)若∠D+∠F=90°,试判断AB与BC的位置关系.
解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.
(2)结论:AB⊥BC.
证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB=90°,∴∠B=90°,∴AB⊥BC.
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5
分钟)