证明数列不等式之放缩技巧以及不等式缩放在数列中应用
大全
证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当n?6,n?Z时,
n(n?2)?1. n2n(n?2)(n?1)(n?3)n(n?2)3?n2(n?6), 证法一:令cn?则cn?1?cn???n?1?0, 2n2n?12n26?83??1. 所以当n?6时,cn?1?cn.因此当n?6时,cn?c6?644n(n?2)?1. 于是当n?6时,
226?(6?2)483???1成立. 证法二:可用数学归纳法证.(1)当n = 6时,
26644k(k?2)?1. (2)假设当n?k(k?6)时不等式成立,即k2(k?1)(k?3)k(k?2)(k?1)(k?3)(k?1)(k?3)????1. 则当n=k+1时,
2k?12k2k(k?2)(k?2)2kn(n?1)?1. 由(1)、(2)所述,当n≥6时,22二、借助数列递推关系 例2.已知an?2?1.证明:
n11??a2a3?12??n?N??. an?13证明:?1111111?n?1?n?1??n??, an?12?12?222?12an∴S?11111111212????????...?()n?1???[1?()n]?. a2a3an?1a22a22a23235?2x,设正项数列?an?满足a1=l,an?1?f?an?.
16?8x例3. 已知函数f(x)= (1) 试比较an与
5的大小,并说明理由; 4n51n
(2) 设数列?bn?满足bn=-an,记Sn=?bi.证明:当n≥2时,Sn<(2-1).
44i?1分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1) 因为an?0,an?1?0,所以16?8an?0,0?an?2.
1
5548(an?)an?555?2an553442?a?0,,因为所以与同号,a?a?an?1??????nn?1n44416?8an432(2?an)22?an551555???0,a2??0,a3??0,…,an??0,即an?.
44444431531531(2)当n?2时, bn??an???(?an?1)???bn?1???bn?1?2bn?1,
422?an?1422?an?122?54因为a1?所以bn?2?bn?1?22?bn?2??2n?1b1?2n?3, 11?1?????????42?2?3?n所以Sn?b1?b2?例4. 已知不等式
?bn?1(1?2n)1?4?(2n?1).
1?241111?????[log2n],其中n为不大于2的整数,[log2n]表示不23n2超过lo2ng的最大整数。设数列
?an?的各项为正且满足
a1?b(b?0),an?nan?1(n?2)2b.证明:an?,n?3,4,5?.
2?b[log2n]n?an?1证明:由an?nan?1111??, 得:
anan?1nn?an?1?111111111?? (n?2), ????, ,… ,anan?1nan?1an?2n?1a2a12以上各式两边分别相加得:
11111??????, ana1nn?12?2?b[log2n]1111111, ????????[log2n]=
2banbnn?12b2? an?2b (n?3).
2?b[log2n]三、裂项放缩 例5.求证:
6n1115?1?????2?
(n?1)(2n?1)49n31?n21??1?2?2???14n?12n?12n?1?2?n?414 解析:因为,所以
?kk?1n1211?25 ?11?1?2????????1??2n?12n?1?33?35又1?1?1???1?1?1?1???249n2?33?411n
?1??n(n?1)n?1n?1 2
当n?3时,当n?2时,
n6n?n?1(n?1)(2n?1),当n?1时,
6n111?1?????2,
(n?1)(2n?1)49n6n1116n1115?1?????2?. ?1?????2,所以综上有
(n?1)(2n?1)49n3(n?1)(2n?1)49n例6.已知an?2n?1,f?x??2x?1,
求证:Tn?b1f?1??b2f?2??1?bnf?n??.
6n?1n2?1?2?1?1?1???111?n?1证明:由于bnf?n??n?2??????2?2n?1??2n?1?1?2?2n?12n?1?1??2?1??2n?1?1?
Tn?b1f?1??b2f?2??1??11??11??bnf?n?????????2??22??1?21?2??1?21?23?1???1??n?n?1???2?12?1??
1?11?111???n?1????. 2?1?22?1?21?262 例7. 已知f(x)?x?x,数列?an?的首项a1?1,an?1?f(an). 2111(1) 求证:an?1?an;(2) 求证:n?6时1?1?a?1?a???1?a?2.
12n2证明:⑴ an?1?an?an,∵a1?12,∴a2,a3,?an都大于0,∴an?0,∴an?1?an. 2(2)
1an?1?1111111,∴.故 ?????21?aaaa(1?a)a1?aan?annnn?1nnnn111111111111???????????????2?1?a11?a21?ana1a2a2a3anan?1a1an?1an?11213323∵a2?()??,a3?()??1,又∵n?2an?1?an,∴an?1?a3?1.
22444∴1?2?1an?1?2 , ∴1?111?????2. 1?a11?a21?an1111n???????n? 2342?12四、分类放缩
例8.当n?3,n?Z,时,求证:1?,n?2时不等式显然成立. 证明:当n?11?
11111111111111???????n?1??(2?2)?(3?3?3?3)?????(n?n?????n)2342?12222222222?n. 22n?21117[2?(?1)n].证明:对任意整数m?4,有?????. 3a4a5am8例9. 已知an?分析:不等式左边很复杂,要设法对左边的项进行适当放缩,使之能够求和。
3
而左边=
11??a4a5?1311?[2?3?am22?12?1?1],如果我们把上式m?2m2?(?1)1111???,23232?12?122中的分母中的?1去掉,就可利用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:
11111???,因此,可将保留,再将后面的项两两组合后放缩,即可
22?123?124?12324求和。这里需要对m进行分类讨论,(1)当m为偶数(m?4)时,
1311111111111??????(?)???(?)??(3?4???m?2)
22222a4a5ama4a5a6am?1am ?1311137??(1?m?4) ??? 2242882(2)当m是奇数(m?4)时,m?1为偶数,
111111117????????????. a4a5ama4a5a6amam?18所以对任意整数m?4,有
7111?。 ????a4a5am8五、利用函数单调性(导数)放缩
例10. 已知函数f(x)?x?ln?1?x?,数列?an?满足0?a1?1, an?1?f?an?; 数列
?bn?满足b1?2,bn?1?2(n?1)bn, n?N*.求证:
an22; ,则当n≥2时,bn?an?n!. (Ⅰ)0?an?1?an?1;(Ⅱ)an?1?(Ⅲ)若a1?22分析:第(1)问用数学归纳法证明;第(2)问利用函数的单调性;第(3)问进行放缩。 证明:(Ⅰ)先用数学归纳法证明0?an?1,n?N. (1)当n=1时,由已知得结论成立;
(2)假设当n=k时,结论成立,即0?ak?1.则当n=k+1时, 因为0
4
又由0?an?1, 得an?1?an?an?ln?1?an??an??ln(1?an)?0,从而an?1?an. 综上可知0?an?1?an?1.
x2x2?ln(1?x)?x, 0 22x2?0,知g(x)在(0,1)上增函数. 又g(x)在?0,1?上连续,所以g(x)>g(0)=0. 由g?(x)?1?x因为0?a?aa22nn?1,所以gn??0,即2?f?aaann?>0,从而n?1?2. (Ⅲ) 因为 b1?12,b1bn?1n?1?2(n?1)bn,所以bn?0,n?1b?n2 , 所以bnbn?b2n?bb?1n?b?b11?2n?n! ————① 1bn?21由(Ⅱ)aa2nanan?1?2,知:an?1a?an, 所以an=a2?a3an?1n2a1a1a2a?1a2n?1222 , 因为a21?2, n≥2, 0?an?1?an?1. 所以 aaaann?1a12?a2n?12222?a111<2n?1<2n=2n————② 由①② 两式可知: bn?an?n!. 例11.求证:ln2?ln3?ln4nn?64???ln3233n?3n?56(n?N*). 证明:先构造函数有 lnx?x?1?lnx?1?1,xxl2n?l3n?l4n???l3nn111 2343n?3n?1?(2?3???3n)因为1?1???13n???1?2?1?3?????1?4?15?16?17?18?1??111? 239???????2n?2n?1???3n?? ?533??99????????3n?13n?1 6????6?9?????18?27??2?3n?1??5n3n????6所以ln2n2?ln33?ln44???ln33n?3n?1?5n5n?6 6?3n?6 5 从而