(3)
20、(1) (2) (3)
21、(1)
(2) (3)
22、(1) (2)
数学(理)答案
参考答案:1.C 2.D 3.B 4.B 5.A 6.A 7.D 8.C 9.C 10.A 11.B 12.C 13.a?5 14.2 15.
14 16.108
→→→→
17解:(Ⅰ)由m⊥n,得m·n=0,从而(2b-c)cosA-acosC=0,
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0 ∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,
1?
∵A、B∈(0,π),∴sinB≠0,cosA=,故A=.
23
???
(Ⅱ)y=2sin2B+sin(2B+)=(1-cos2B)+sin2Bcos+cos2Bsin 666
31?
sin2B- cos2B=1+sin(2B-). 226
2???7?
由(Ⅰ)得,0<B<,-<2B-<,
3666
???
∴当2B-=,即B=时,y取最大值2.
623=1+
18.解:⑴当?2?x?0时,0??x?2,f(?x)?又f(x)为奇函数,?f(x)??f(?x)??3xx39?x?x?1?3xx9?1,
1?9当x?0时,由f(?0)??f(0)?f(0)?0?f(x)有最小正周期4,
?f(?2)?f(?2?4)?f(2)?f(?2)?f(2)?0综上,
,
?3x,0?x?2?x9?1?? f(x)??0,x?{?2,0,2}?x3??,?2?x?0x??9?1xxx?xxx?0,(9?1)(9?1)?0 ⑵设0?x1?x2?2,则3?3?0,1?3121212?f(x1)?f(x2)?39x1x1?1?39x2x2?1?(31?32)(1?3(9x1xxx1?x2)?1)(9x2?1)?0
?f(x1)?f(x2),?f(x)在?0,2?上为减函数。
⑶即求函数f(x)在??2,2?上的值域。
当x??0,2?时由⑵知,f(x)在?0,2?上为减函数,
?982?f(2)?f(x)?f(0)?12,
982?f(?x)?12当x???2,0?时,0??x?2,?,
9??1f(x)??f(?x)???,??
82??2当x?{?2,0,2}时,f(x)?0
9??1?91?0?,?f(x)的值域为??,?????282822????? ?9??1?91??????,??0?,?时方程方程f(x)??在??2,2?上有实数解。 ????82??2?822?19.方法一:
(1) 证法一:取CE的中点G,连FG、BG.
∵F为CD的中点,∴GF//DE且GF?12DE.
B ∵AB?平面ACD,DE?平面ACD,
∴AB//DE,∴GF//AB.
2∴四边形GFAB为平行四边形,则AF//BG. ∵AF?平面BCE,BG?平面BCE,
C ∴AF//平面BCE.
证法二:取DE的中点M,连AM、FM.
E
又AB?1DE,∴GF?AB.
G H A M
F
D ∵F为CD的中点,∴FM//CE.
∵AB?平面ACD,DE?平面ACD,∴DE//AB. 又AB?DE?ME, 2∴四边形ABEM为平行四边形,则AM//BE. ∵FM、AM?平面BCE,CE、BE?平面BCE, ∴FM//平面BCE,AM//平面BCE.
又FM?AM?M,∴平面AFM//平面BCE.
1 ∵AF?平面AFM,
∴AF//平面BCE.
(2) 证:∵?ACD为等边三角形,F为CD的中点,∴AF?CD.
∵DE?平面ACD,AF?平面ACD,∴DE?AF. 又CD?DE?D,故AF?平面CDE. ∵BG//AF,∴BG?平面CDE. ∵BG?平面BCE,
∴平面BCE?平面CDE. (3)
解:在平面CDE内,过F作FH?CE于H,连BH. ∵平面BCE?平面CDE, ∴FH?平面BCE.
∴?FBH为BF和平面BCE所成的角.
设AD?DE?2AB?2a,则FH?CFsin45??BF?AB?AF2222a,
?a?(3a)?2a,
FHBF?2422R t△FHB中,sin?FBH?. 24∴直线BF和平面BCE所成角的正弦值为
.
方法二:
设AD?DE?2AB?2a,建立如图所示的坐标系A?xyz,则
A?0,0,0?,C?2a,0,0?,B?0,0,a?,Da,3a,0,Ea,3a,2a.
????∵F为CD的中点,∴F???3?2a,?a,0?.
?2?3?????3?????????3 (1) 证:AF??a,a,0?,BE?a,3a,a,BC??2a,0,?a?,
?2?2??????1????????∵AF?BE?BC,AF?平面BCE,∴AF//平面BCE.
2?????????3?????????3 (2) 证:∵AF??a,a,0?,CD??a,3a,0,ED??0,0,?2a?,
?2?2??????????????????????????????????∴AF?CD?0,AF?ED?0,∴AF?CD,AF?ED. ????∴AF?平面CDE,又AF//平面BCE,
∴平面BCE?平面CDE.
??????????? (3) 解:设平面BCE的法向量为n??x,y,z?,由n?BE?0,n?BC?0可得:
? x?3y?z?0,2x?z?0,取n?1,?3,2.
?????????3?3 又BF??a,a,?a?,设BF和平面BCE所成的角为?,则
?2?2???????BF?n2a2 sin?????. ????42a?22BF?n∴直线BF和平面BCE所成角的正弦值为20. 解:(1)函数的定义域为?0,??? 设
f??x??2x?2x?2?x?1??x?1?x24.
x 当x变化时,f?x?,f??x?值的变化情况如下表:
1 0?0,1? — 递减 min?1,??? + 递增 1x3f??x? f?x? 1 所以,当x?1时,f?x??1. ?2lnxx,令h?x??x?1x3(2)由f?x?≥2tx?421x2对x??0,1?恒成立2t≤x?2?2lnxx,
h??x??x?2x?3?2xlnxx44
24?x??0,1?,?x?3?0,?2x?0,2xlnx?0,x?0,?h??x??02得h?x?为?0,1?上的减函
数.∴当x?1时,h?x??x?1x3?2lnxx有最小值2,得2t≤2,t≤1,故t的取值范围是
???,1?.
21.(1)证明:当n?1时,a1?S1??m?1??ma1,解得a1?1.
当n?2时,an?Sn?Sn?1?man?1?man.即?1?m?an?man?1.
又m为常数,且m?0,∴
anan?1?m1?mm?n?2?.
∴数列?an?是首项为1,公比为(2)解:由(1)得,q?f?m??∵bn?f?bn?1??bn?11?bn?11?mm的等比数列. ,b1?2a1?2.
1?m1111,∴??1,即??1?n?2?.
bnbn?1bnbn?1?1?1∴??是首项为,公差为1的等差数列.
2?bn?2112n?1∴,即bn?(n?N*). ???n?1??1?2n?1bn22(3)解:由(2)知bn?8分
22n?13,则
2n?1bn?2?2n1?n所以Tn?.
?22b1?23b2?24b3???2nbn?1?2n?1bn,?
即Tn?2?1?2?3?2?5???223412n?1n??2n?3??2??2n?1?, ①
nn?1则2Tn?2?1?2?3?2?5???2??2n?3??2②-①得Tn?2故Tn?2n?1??2n?1?, ②
n?1??2n?1??2?2?2???234n?1,
??2n?1??2?23?1?2?n?11?2?2n?1??2n?3??6
22.解:(1) 因为直线l:y?3?x?2?在x轴上的截距为2,所以a?2
|?23|?2 直线的方程变为3x?y?23?0,由直线与圆相切得?3?所以椭圆方程为
x223?b
???1?4?y23?1
32(2)设直线AE方程为y?k(x?1)?代入
x2,
32?k)?12?0
24?y23?1得:(3?4k)x?4k(3?2k)x?4(3222 设E(xE,yE),F(xF,yF),因为点A(1,)在椭圆上,
32y??kx??k , EE223?4k又直线AF的斜率与AE的斜率互为相反数,
324(?k)?1232y??kx??k 所以直线EF的斜率为同理可得:xF?,FF223?4ky?yE?k(xE?xF)?2k1kEF?F??
xF?xExF?xE24(3?k)?122所以xE?