25.(12.00分)已知抛物线y=x+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.
2
6
参考答案与试题解析
一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。 1.(3.00分)在0,﹣1,0.5,(﹣1)四个数中,最小的数是( ) A.0
B.﹣1 C.0.5 D.(﹣1)
22
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 ﹣1<0<0.5<(﹣1),
∴在0,﹣1,0.5,(﹣1)四个数中,最小的数是﹣1. 故选:B.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
2.(3.00分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是( )
2
2
A.62° B.108°
C.118°
D.152°
【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE. 【解答】解:如图,∵AB∥CD,
∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,
故选:C.
【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
7