6.5 动目标显示与动目标检测
引言
1.目标回波频谱
6.5.1 目标回波和杂波的频谱 2.杂波频谱 原理 递归
传统 非递归
6.5.2 MTI滤波器 零点分配算法
滤波器设计 优化 预测误差算法
结语
原理
MTI+FFT 6.5.3 MTD滤波器 滤波器设计 点最佳 等间隔最佳 结语 6.5.4 改善因子分析 MTI MTD
6.5 动目标显示与动目标检测
雷达探测的运动目标如飞机,导弹,舰艇,车辆等周围存在各种背景,包括不动的地物和运动着的云雨,海浪或金属丝干扰等。动目标显示(Moving Target Indicator :MTI)与动目标检测(Moving Target Detection: MTD)就是使用各种滤波器,滤去这些背景产生的杂波而取出运动目标的回波。此外也可以通过把雷达安装在山上、增加雷达天线的倾角、安装防杂波网来阻止杂波进入天线;或通过调整雷达天线的波束形式、采用极化技术、降低雷达的分辨单元、在时域采用CFAR检测、自适应门限、杂波图来抑制杂波。在频域上应用MTI与MTD技术可以提高信杂比,改善杂波背景下检测运动目标的能力。本节首先分析目标回波和杂波的频谱特性;然后分别讨论MTI与MTD原理及滤波器设计方法;最后分析MTI与MTD对改善因子的提高。
6.5.1 目标回波和杂波的频谱
运动目标回波和杂波在频谱结构上有所差别,运动目标检测就是利用这种差别,从频率上将它们区分,以达到抑制杂波而显示目标回波的目的。为此,应首先弄清楚目标和杂波的回波的特性。 (1) 目标回波的频谱
雷达发射相参脉冲串,其脉冲宽度为Te,脉冲重复频率为fr。当天线不扫描而对准目标时,所得脉冲为无限脉冲串。调制信号u1(t)及其频谱U1(f)分别为
?t?nTru1(t)?A?rect??Tn???e????? (6.5.1) ?
ATesin(?fTe)?U1(f)???(f?nfr) (6.5.2)
Tr?fTen???A为信号振幅。而高频载波u2(t)及其频谱U2(f)为
u2(t)?cos?0t (6.5.3)
1U2(f)?[?(f?f0)??(f?f0)] (6.5.4)
2发射的相参脉冲串u(t)?u1(t)?u2(t),故其频谱U(f)为
U(f)?U1(f)?U2(f) (6.5.5)
发射信号频谱fr脉冲发射At回波(固定)f0?f0?1?(a)固定回波频谱f0?1?f0f0?1f??2R0c(a)frt回波(运动)2(R0-?R)cf0?f?10?(b)动目标回波频谱f0?1?f0f(b)frtum(t)?(f0?fd)?(f0?fd)?1(c)t(d)?天线扫描动目标回波频谱Um(f)(c)f0?fd1f0?fd??f?(f0?fd)1?(f0?fd)??(d)f0?fd1f0?fd??f
图6.5.1 发射接收信号时域与频域特性
雷达发射信号通常是窄带信号(如图6.5.1(a)),因而运动目标回波频谱的特征是将发射信号的频谱位置在频率轴上平移一个多普勒频率
fd?2vr?(如图6.5.1(c)),fd的符号由目标运动的方向决定,靠近为正,远离为负。固定回波的频谱与发射信号一致,只是幅度有衰减(如
图6.5.1(b))。
多普勒频率fd可以直观地解释为:振荡源发射的电磁波以恒速c传播,当接收者相对振荡源不动,则它的接收频率等于发射频率。当
接收者与振荡源之间有相对接近的运动时,则它接收电磁波的频率大于振荡源发射频率,当两者背向运动时,结果相反。运动目标与雷达有相对运动,所以存在多普勒频率fd。定义固定回波的波程为2R0,R0为雷达到目标的距离,则回波到达雷达的时间为标与雷达有相对运动,其波程为2(R0??R),时间为
2R0;由于运动目c2(R0??R)。
c雷达工作时,天线以各种方式进行扫描,这时收到的回波脉冲为有限数,且其振幅受天线方向图调制。设天线方向图可用高斯函数来表示,则收到的回波脉冲串的包络函数可写为
m(t)?2??exp??2?2?2t2? (6.5.6)
?是和天线波瓣宽度及扫描速度有关的参数。?减小,表示观察时间增加。
天线扫描时收到的回波信号,可以用m(t)和无限脉冲串ur(t)的乘积表示。ur(t)为天线不扫描时的回波脉冲串,即
um(t)?m(t)ur(t) (6.5.7)
其包络函数m(t)的频谱为
M(f)?e?f22?2 (6.5.8)
m(t)M(f)?s0t
0f
图6.5.2 天线扫描条件下回波频谱
天线扫描时回波信号的频谱Um(f)为
Um(f)?M(f)?Ur(f) (6.5.9)
即无限回波脉冲串频谱Ur(f)的每一根谱线均按M(f)的形状展宽(如图6.5.1(d))。谱线展宽的程度反比于天线波束照射目标的时间T?。已求出当天线方向图为高斯形时谱线展宽的均方值为
?s?0.2650.265fr?T?n (6.5.10)
式中:fr为雷达重复频率,n为在单程天线方向图3dB宽度内收到的脉冲数。中频回波信号经过相位检波器后,相当于把中频信号的频谱搬移到零频率附近,根据目标多普勒频移fd的不同,相位检波后谱线nfr?fd的具体位置也有差异,每根谱线均按脉冲串包络的频谱形状展宽。
⑵ 杂波频谱
对于固定点杂波,当天线不扫描时,固定杂波的频谱是位于nfr上的谱线,可以用对消器全部滤去。当天线扫描时,由于回波数目有限,谱线将展宽。由于天线扫描引起双程天线方向图对回波信号调幅,杂波谱展宽可用高斯函数表示为
G(f)?G0e?f222?s (6.5.11)
其中?s?0.265n,n为在单程天线方向图3dB宽度内的脉冲数。设T?为天线照射目标的等效时间,则n?T?fr,即?s?0.265T?,即
?s与目标照射时间成正比。
杂波信号的功率谱的实验公式可近似为
W(f)?g(f)?g022??f?2?exp??a??f??? (6.5.12)
???0???其中:W(f)作为频率函数的杂波功率谱,g(f)杂波的傅立叶变换,f0雷达载波,a和杂波相关的参数。
杂波频谱可以用杂波频率分布的均方根值?c(Hz)或速度分布的均方根值?v(ms)来表示,式(2-12)可写为
?f2??f2?2? W(f)?W0exp???2?2???W0exp???8?2?? (6.5.13)
c?v???其中:W0?g02cc22,?c?,?? ,可得a?。?c为杂波功率谱方差。?v为杂波内部起伏运动速度的均方根值,和工作波长无2?f08?v2?v关。相同的?v值,对不同的雷达工作波长产生的杂波谱线的宽度也是不同的。工作波长越短,杂波谱的展宽越严重。图6.4.1中的载波频率
f0为1GHz。
(a)(b)0(c)f0f0(d)f0f0?fdf滤波器频率特性0fdff0?fd0f?f2f0f0d0fdf
图6.5.3 杂波的功率谱
在接收机前端引入发射信号作为基准电压,可得到收发频率的差频电压,即多普勒电压。图6.5.4给出各主要点的频谱图。
(a)(b)0(c)f0f0(d)f0f0?fdf滤波器频率特性0fdf0?fdf0f0?fd2f0f0fdf图6.5.4 主要点频谱图及滤波器特性
C(f)天线扫描造成相位检波后的频谱如图(d),固定杂波的频谱在零于天线扫描收到的回波脉冲数有限,谱线会有一定程中还会出现杂乱分量,把它近似看成均匀谱。本节要
图6.5.4(d)所示,取出动目标频谱,滤除杂波频谱。 滤波器凹口和通带的平坦程度是关注的特性。动目标
?f0点,图中给出的是一条谱线。实际中,由度的展宽,由于系统不稳等原因,杂波谱
系统不稳造成设计的滤波器特性如
图6.5.5 地杂波的功率谱
0f0f滤波器要满足的要求:(1)凹口适当扩宽,
与杂波梳状谱宽度相当。(2)杂波有多普勒频移,即不在零频时,滤波器凹口要对准杂波谱平均多普勒位置。(3)凹口深度能使杂波尽量多的衰减,目标回波能在尽可能大的速度范围内有较大输出。 改善因子是综合评定滤波器性能的参数。
6.5.2 MTI滤波器 (1)MTI滤波器原理
当杂波和运动目标回波在雷达显示器上同时显示时,会使目标的观察变得很困难。如果目标处在强杂波背景内,弱的目标淹没在强杂波中,特别是当强杂波使接收机发生过载时,将很难发现目标。目标回波和杂波在时间域上难以区分,但由于目标的速度远大于背景的速度,目标回波的多普勒频移远大于背景的多普勒频移,从而可在频域上区分目标与杂波。动目标显示滤波器(MTI)利用运动目标回波和杂波在频谱上的区别,有效地抑制杂波而提取信号。在雷达上加装MTI滤波器,大大的改善了雷达在强杂波背景中检测运动目标的能力。MTI有多种实现方法,包括传统的相消器和各种优化的FIR滤波器。采用重复参差和时变加权的MTI体制可以克服盲速。
MTI和MTD是对多个回波数据进行处理,因此数据需要进行存储。其中每一行的数据是沿距离单元采样值,反映了某一距离单元的信号特征。每一列的数据为从相同的距离单元,依次间隔一个脉冲重复周期的采样值,这些数据的变化反映了在同一距离单元目标的变化情况。
MTI和MTD都是对同一距离单元的数据,即同一列的数据进行处理。通常MTI雷达滤波器如图6.5.6所示图,图中Tr为雷达重复周期,在这里作为延迟线的延迟时间,wi为滤波器权系数值。
输入TrTrTrTrw0w1w2求和输出w3…wN?1
图6.5.6 MTI滤波器的组成
传统的MTI相消器可以滤除零频杂波,性能不高,改善因子在20dB左右。优化的MTI滤波器可以满足上一节提出的动目标滤波器要求,现在就滤波器的设计讨论如下。
(2) MTI滤波器设计
1.传统MTI滤波器设计:
在相位检波器输出端,固定目标的回波是一串振幅不变的脉冲,而运动目标的回波是一串振幅调制的脉冲。在把回波信号送到终端显示器前,必须先消除固定目标回波。最直接的方法是将相邻重复周期的回波信号相减,则固定目标回波由于振幅不变而互相抵消,运动目标回波相减后剩下相邻重复周期振幅变化的部分。
传统的MTI滤波器有两种形式:非递归形和递归形。
(a) 非递归滤波器
不带反馈的滤波器称为非递归型滤波器。下面以一次对消器为例进行说明。
一次对消器,即二脉冲对消。其结构图如图6.5.7(a),对消器的输入X(z)相位检波器的输出信号。它是一个单零点系统,零点位置在z??1,令s?j?,即z?ej?T在Z平面上是单位圆。
X(z)Z?1??+Y(z)H(z)?1?z?1(a)框图 (b) 零点图
图6.5.7 一次对消滤波器
由相位检波器输出的脉冲包络为
u(t)?U0cos?(t) (6.5.14)
?为回波与基准电压之间的相位差
?(t)???0tr???02(R0?vrt)??dt??0 (6.5.15)
c回波信号按重复周期Tr出现,将回波信号延迟一周期后,其包络是
u'(t)?U0cos[?d(t?Tr)??0] (6.5.16)
?T??T????u?u'?u?2U0sin?dr?sin??d?dr??0? (6.5.17)
2?2???输出包络为一多普勒频率的正弦信号,其频率为
2U0sin?dTr2 (6.5.18)
为多普勒频率的函数。当?dTr2?n?(n=1,2,3,…)时,输出振幅为零。这时的目标速度正相当于盲速,盲速是运动目标回波在相位检波