这里参考图方法不再适用,当 C 较小时,用微分方程可求出振体的运动规律,如图4-22所示。
②阻尼对振动的影响
由图5-3-3可见,阻尼使振幅逐渐衰减,直至为零。同时也伴随着振动系统的机械能逐渐衰减为零。
此外,愈大,即阻尼愈大,振幅衰减愈快。而增大质量m可使n减小。所以,为了减小阻尼,单摆的重球及弹簧振子往往选用重球。
③常量阻力下的振动
例1、如图5-3-4所示,倔强系数为250g/cm的弹簧一端固定,另端连结一质量为30g的物块,置于水平面上,摩擦系数,现将弹簧拉长1cm后静止释放。试求:(1)物块获得的最大速度;(2)物块经过弹簧原长位置几次后才停止运动。
解:振体在运动中所受摩擦阻力是与速度方向相反的常量力,并不断耗散系统的机械能,故不能像重力作用下那样,化为谐振动处理。
(1)设首次回程中,物块运动至弹簧拉力等于摩擦力的x位置时,达最大速度。 由 ,
再由能量守恒: 代入已知数据得
(2)设物体第一次回程中,弹簧的最大压缩量为,则
再设物体第一次返回中,弹簧的最大拉伸量为,则
可见振体每经过一次弹簧原长位置,振幅减小是相同的,且均为
而
故物体经过16次弹簧原长位置后,停止在该处右方。
5.3.3 受迫振动--在周期性策动外力作用下的振动。 例如:扬声器的发声,机器及电机的运转引起的振动。 1、振动模型及运动规律
如图5-3-5所示,为策动外力作用下的振动模型。其中,阻力R=-cv,为常见的粘性阻尼力。
策动力F=Hcospt,为简谐力时。 由,有化为标准标式
式中 ,,
由微分方程理论可求得振子的运动规律
(2)受迫振动的特性
在阻尼力较小的条件下,简谐策动力引起的振动规律如图5-3-6所示。在这个受迫振动过程由两部分组成:一部分是按阻尼系统本身的固有频率所作的衰减振动,称为瞬态振动(图(a));另一部分按策动力频率所作的稳定振动(图(b))。在实际问题中,瞬态振动很快消失,稳态振动显得更加重要。稳态振动的频率与系统本身的固有频率无关,其振幅与初位相
也不由初始条件确定,而与策动频率p密切相关。
5.3.4、共振-当策动力频率p接近于系统的固有频率时受迫振动振幅出现最大值的现象。
如图5-3-7所示的一组曲线,描述了不同阻尼系统的稳态振幅A随策动力频率p改变而引起的变化规律。由图可见:
1、当p接近时振幅最大,出现共振。 2、阻尼越小,共振越大。 3、时,振幅就是静力偏移,即
4、p>>时,振体由于惯性,来不及改变运动,处于静止状态。
§5.4 振动的合成
若一个物体同时受到两个或几个周期性策动力的作用,在一般情况下其中一个力的存在不会对另外一个力产生影响,这时物体的振动就是它在各个策动力单独作用下产生的振动相互叠加后的振动,由各策动力单独产生的振动来求它们叠加后的振动,叫振动的合成。 5. 4.1、 同方向、同频率两简谐运动的合成
当一个物体同时参与同方向的两个振动时,它在某一时刻的位移应为同一时刻两个振动的位移的代数和。当两振动的频率相同时,设此两振动的位移分别为
则合振动的位移应为
上式中
根据以上结论,进一步可以看到 ①若(k为整数),则
即合振动的振幅达到最大值,此时合振动的初位相与分振动的初位相同(或相差) ②若或 则
即合振动的振幅达到最小值。此时合振动的初位相取决于和的大小。即当时,合振动的初位相等于;当时,合振动的初位相等于;当时,则A=0,物体不会发生振动。 ③一般情况下,可以任意值,合振动的振幅A的取值范围为 ≥≥
5. 4.2、 同方向、频率相近的两振动的合成
设物体同时参与两个不同频率的简谐运动,例如
为简单起见,我们已设,这只要适当地选取时间零点,是可以做到的。如果再设,则合振动
由于和相差不多,则有()比()大很多,由此,上一合振动可以看成是振幅为(随时间变化)。角频率为的振动。这种振动称为\拍\。拍的位移时间图像大致如图5-4-1所示。由图可见,振幅的变化周期为变化周期的一半,即
或拍频为
5.4.3、同频率相互垂直的两个简谐振动的合成 当一物体同时参与相互垂直的振动时
合振动的轨迹在直角坐标系中的方程为 (6-17) 当时,
得
合成结果仍为简谐振动(沿斜率为的直线作简谐振动)。 当=时,
可见,当时,合振动均为椭圆振动,但两者旋转方向不同。
§5.5机械波
5.5.1、机械波
机械振动在介质中的传播形成机械波,波传递的是振动和能量,而介质本身并不迁移。 自然界存在两种简单的波:质点振动方向与波的传播方向垂直时,称为横波;与传播方向一致时,叫纵波,具有切变弹性的介质能传播横波;具有体变弹性的介质可传播纵波,固体液体中可以同时有横波和纵波,而在气体中一般就只有纵波存在了。
在波动中,波上相邻两个同相位质点间的距离,叫做一个波长,也就是质点作一个全振动时,振动传播的距离。由于波上任一个质点都在做受迫振动,因此它们的振动频率都与振源的振动频率相等,也就是波的频率,在波动中,波长、频率与传播速度之间满足 (1)
注意:波速不同于振动质点的运动速度,波速与传播介质的密度及弹性性质有关。 5.5.2、波动方程
如图5-5-1所示,一列横波以速度沿轴正方向传播,设波源O点的振动方程为:
在轴上任意点P的振动比O点滞后时间,即当O点相位为时,P点的相位为,由,,,P
点振动方程为
这就是波动方程,它可以描述平面简谐波的传播方向上任意点的振动规律。当波向轴负
方向传播时,(2)式只需改变的正负号。由波动方程,可以 (1)求某定点处的运动规律 将代入式(6-14),得
其中为质点作简谐振动的初相位。 (2)求两点与的相位差
将代入(2)式,得两点、的相位差
若为整数),则,则该两点同相,它们的位移和速度都相同。若为整数),则,则该两点相位相反,它们的位移和速度大小相同,速度方向刚好相反。
球面波的波动方程与平面波相比,略有不同,对于球面波,其振幅随传播距离的增加而衰减,设离波源距离为处的振幅为,离波源距离为处的振幅为。则有
即振幅与传播的距离成反比 球面简谐波的方程为
式中A是与波源的距离为一个单位长度处的振幅。 3、波的叠加和干涉
当空间存在两个(或两个以上)振源发出的波时,空间任一点的扰动是各个波在该点产
生的扰动的矢量和,这叫做波的叠加原理。
当有频率相同、振动方向相同的两列波在空间叠加时,会出现某些地方振动增强,某些地方振动减弱的现象,叫做波的干涉,这样的两列波叫相干波。
设有两列相干波自振源、发出,两振源的位相相同,空间任一点P至的距离为,至的距离为(图5-5-2),则两列波在P点产生的振动的相位差为 当为整数),即当波程差
时,P点的合振动加强; 当,即当波程差
时,P点的合振动减弱,可见P点振动的强弱由波程差决定,是P点位置的函数。 总之,当某一点距离两同位相波源的波程差等于零或者是波长的整数倍时,该点振动的合振幅最大,即其振动总是加强的;当某一点距离两同位波源的波程差等于半波长或半波长的奇数倍时,该点振动的合振幅最小,即其振动总是削弱的。 4、波的反射、折射和衍射
当波在传播过程中遇到的两种介质的交界面时,一部分返回原介质中,称为反射波;另一部分将透入第二种介质继续传播,称为折射波,入射波的传播方向与交界面的法线成角,(叫入射角),反射波的传播方向与交界面的法线成角(叫反射角)。折射波的传播方向与法线成角(叫折射角),如图5-5-3,则有
式中为波在入射介质中的传播速度,为波在折射介质中的传播速度,(1)式称为波的反射定律,(2)式称为波的折射定律。
弦上的波在线密度不同的两种弦的连结点处要发生反射,反射的波形有所不同。
设弦上有一向上脉冲波,如图5-5-4,传到自由端以后反射,自由端可看成新的振源,振动得以继续延续下去,故反身波仍为向上的脉冲波,只是波形左右颠倒。当弦上有向上脉冲波经固定端反射时,固定端也可看成新的\振源\,由牛顿第三定律,固定端对弦的作用力方向与原脉冲对固定端的作用力方向相反,故反射脉冲向下,即波形不仅左、右颠倒,上、下也颠倒,这时反射波可看成入射波反向延伸的负值(如图5-5-5),将周期波看成一系列连续脉冲,周期波经自由端或固定端的反射也可由此得出。
波在传播过程中遇到障碍物时,偏离原来的传播方向,传到障碍物\阴影\区域的现象叫波的衍射。当障碍物或孔的尺寸比波长小,或者跟波长相差不多时,衍射现象比较明显;当障碍物或孔的尺寸比波长大的时候,衍射现象仍然存在,只是发生衍射的部分跟直进部分相比,范围较小,强度很弱,不够明显而已。此外,在障碍物或小孔尺寸一定的情况下,波长越长,衍射现象越明显。 5.6.5、驻波
驻波是频率相同、振幅相同、振动方向一致、传播方向相反的两列简谐波叠加的结果,如图6-5-6,设弦上传递的是连续的周期波,波源的振动方程为
向左传播的入射波表达式为
设波源到固定端的距离为,则入射波传到反射点时的相位为
考虑到入射波和反射波在连接点的振动相位相反,即入射波在反射时产生了的相位突变,故反射波在反射点的相位为
反射波在原点P的相位为
因而,反射波的波动方程为
合成波为:
合成波的振幅为与x有 关,振幅最大处为波腹,振幅最小处为波节。波腹的位置为
即 如图5-6-6中的D、E、F等处。 波节的位置为
即
如图5-5-7中的O、A、B等处。
相邻两波节(或波腹)之间的间距为。
不同时刻驻波的波形如图5-6-7所示,其中实线表示、T、2T......时的波形;点线表示、......时的波形;点划线表示、时的波形。 5.5.6、多普勒效应