(2)若c的最小值为m,又p、q、r是正实数,且满足p?q?r?3m,求证:
p2?q2?r2?3.
数学(理科)参考答案
一.选择题 : CADBA ACCBD BA 二.填空题: 1.
25??11 14.f?x??2sin?x??? 15.2 16.1 56??6三.解答题:
17.(本小题满分12分) 【解析】(1)由题设知f?x???1?????2x??k?, 1?cos2x?.令????62?6???
??31?1?????31?31??3cos2x??sin2x??cos2x?sin2x??sin2x????????. ????2??6?23?2?22?2?22?所以最小正周期是T??,值域1,2.
??18.(本小题满分12分)(1)略(2)19.(本小题满分12分)
1,(3)18 5【解析】:设既会唱歌又会跳舞的有x人,则文娱队中共有?7?x?人,那么只会一项的人数是?7?2x?人.
(1)∵P???0??1?P???0??7, 10 6
3C72?2x3∴P???0??,即2?,
10C7?x10∴
?7?2x??6?2x??3?x?2.
?7?x??6?x?10故文娱队共有5人.
112C2?C3C2331,P???1???,P??2??(2)P???0??, ??10C525C5210?的分布列为
? 0 P 1 2 331 105103314?1??2?? 105105∴E????0?20.(本小题满分12分)
x2?y2?1,知a?2,b?1,c?3, 【解析】(1)因为椭圆方程为4∴F1?3,0,F2????3,0,设P?x,y?(x?0,y?0),
??????????522则PF1?PF2??3?x,?y?3?x,?y?x?y?3??,
4???7?22?x2?1?x?1x?y?2??3?x???42?1,?y?1,联立?2又,解得?23. ??3,∴P???24xy???y?????y2?14?2???4(2)显然x?0不满足题意,可设l的方程为y?kx?2,设A?x1,y1?,B?x2,y2?,
?x21216k??y2?1,x?x????1?4k2?x2?16kx?12?0,∴x1x2?联立?4, 12221?4k1?4k?y?kx?2?且??16k?2??4?1?4k2??12?0,∴k2?3, 4????????OB?0,∴x1x2?y1y2?0,∴x1x2??kx1?2??kx2?2??0, 又?AOB为锐角,∴OA?
7
244?k???0, 1216k??22∴?1?k?x1x2?2k?x1?x2??4??1?k??2k??4??2?221?4k?1?4k?1?4k∴k2?4,又∵k2?332?3??3?4,∴4?k?4,∴k????2,??2???????2,2?? ?21.(本小题满分12分) 【解析】(1)f??x??x?1?lnx?x?1?2
∴f??1??12,于是m??2,直线l的方程为2x?y?2?0..............3分 原点O到直线l的距离为
255. (2)f?x??xlnxx?1,?x??1,???,f?x??m?x?1?,即lnx?m??1??x?x??, 设g?x??lnx?m??x?1??x??,即?x??1,???,g?x??0 g??x??1?1??mx2?x?mx?m??1?x2???x2, ① 若m?0,存在x使g??x??0,g?x??g?1??0,这与题设g?x??0矛盾 ② 若m?0,方程?mx2?x?m?0的判别式??1?4m2, 当??0,即m?12时,g??x??0, ∴g?x?在?1,???上单调递减, ∴g?x??g?1??0,即不等式成立 当0?m?12时,方程?mx2?x?m?0,设两根为x1,x2, ?x1?1?4m21?1?4m21?x2?x1?2m??0,1?,x2?2m??1,??? 8
当x??1,x2?,g??x??0,g?x?单调递增,g?x??g?1??0与题设矛盾,综上所述m?1. 2(3)由(2)知,当x?1时,m?11?1?时,lnx??x??成立, 22?x?不妨令x?2k?1k?N*?, ?2k?1所以
2k?11?2k?12k?1?4k????, ?22k?12?2k?12k?2?4k?114kln2k?1?ln2k?1?k?N*? ???????2??44k?111?ln3?ln1????44?12?1?11?ln3?ln1???累加可得 ?244?2?1?n?1ln2n?1?ln2n?1????????44?n2?1?n1iln?2n?1???2?n?N*?, 4i?14i?1nln2n?1??3i?1i4i2?n?N?
?1*22.【解析】(1)连接OE,OD,可证?OAD??OED,∴?OED??OAD?RT?,所以DE是圆O的切线. (2)?ACB?60
23.【解析】(1)?cos??3,(2)AB?5
24.【解析】(1)不等式x?x?2c?2的解集为R?,函数y?x?x?2c在R上恒大于或等于2,
0?2x?2c,x?2c∵x?x?2c??,∴函数y?x?x?2c,
2c,x?2c?在R上的最小值为2c,∴2c?2?c?1,所以,实数c的取值范围为1,???.
? 9
(2)由(1)知p?q?r?3,又p,q,r是正实数,所以
?p
2?q2?r2??12?12?12???p?1?q?1?r?1???p?q?r??9,即
22p2?q2?r2?3,当且仅当p?q?r?1等号成立.
10