stata常用命令(5)

2019-02-16 17:58

则stata给出Shea偏R2和调整的偏R2。

forcenonrobust给出最小特征值统计量及其临界值,即使采用稳健估计(这一检验的假设条件是误差项为独立正态分布)。

estat overid[,lag(#) forceweights forcenonrobust]

该命令给出了过度识别约束检验。如果使用2sls估计估计,则Stata给Sargan’s(1958)和Basman’s(1960)卡方统计量,这也是Wooldridge’(1995)稳健得分检验。 如果采用liml估计方法,则stata给出Anderson and Rubin’s(1950) 卡方统计量以及Basmann F统计量;如果采用GMM估计,则stata给出hansen’s(1982)J统计量。Lags(#)用于计算得分检验的HAC(异方差自相关一致)统计量的过程中进行去噪时设定滞后阶数。如果设定lag(0),则表示不进行去噪处理。默认选择为lag(1)。这一选择仅使用于2sls估计方法和设定vce(hac)选项情况。

Forceweight 表示即使采用aweights,pweights或iweights也进行检验。Stata仅对于fweights的情况进行检验,其他权数所得到临界值可能不准确。 Forcenonrobust 指在2sls或LIML估计中即使采用稳健标准差也进行Sargan and Basmann检验(这一检验的假设的假设条件是误差项为独立正态分布)。 例子:

log(wage)=a+b*educ+c*exper+d*expersq+u

怀疑模型教育(educ)具有内生性问题,利用父母接受教育的年数(fatheduc,motheduc)作educ的工具变量估计上述模型。 (1)利用2SLS估计模型

.ivregress 2sls lwage exper expersq (educ=fatheduc motheduc),first 第一阶段回归结果为:

educhat=9.1+0.19fatheduc+0.16motheduc+0.05exper

(21.34) (5.62) (4.39) (1.12) - 0.001expersq (-0.84)

第二阶段的估计结果为:

lwagehat=0.05+0.06educ+0.04exper-0.001expersq

(0.12) (1.95) (5.29) (-2.24) (2)检验educ的内生性

.quietly ivreg iwage exper expersq {educ=fatheduc motheduc} .est store IV_reg

.quietly regress lwage exper expersq educ .est store LS_reg .hausman IV_reg LS_reg

可以得到hausman估计量=2.7,P值=0.44。接受原假设,即educ是外生的。 (3)进行过度识别的约束检验 .estat overid

可得Sargan统计量=0.38,P值=0.54接受原假设。


stata常用命令(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:城乡建委办公自动化系统用户需求设计说明书 - 图文

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: