习题三龙永红版答案

2019-02-16 18:13

习题三答案

1. 证明:F?x2,y2??F?x1,y2??F?x2,y1??F?x1,y1? ?P?x1<x?x2,y?y2??P?x1<x?x2,y?y1?

?P?x1<x?x2,y1<y?y2??0由概率的非负性,知上式大于等于零,故得正. 2. 解:①, x2 x1 0 1 2 0 1/56 10/56 10/56 1 5/56 20/56 10/56 PX2?x2j 3/28 15/28 5/14 ??P?X1?x1i? 3/8 5/8 1 ②. P?X1?0,X2?0???1?P{x2?0|x1?0}?P?x1?0?

?1??1??C27??3203205????821?8?56?14 ?21 56P?X1?X2??P?x1?0,x2?0??P?x1?1,x2?1??P?x1x2?0??1?P?x1x2?0??1?P?x1?1,x2?1??P?x1?1,x2?2?

?1?5102613??? 145656283. 解:①由概率的性质

??又

??0??0?x0?????3x?4yf?x,y?dxdy??0kedxdy?1?k1?12 01????x?3x?4yg?x,y?dxdy??0?0k2edxdy?1?k2?21

????0② fX?x??1?3e?3x x>0 ?41???3x?4ydx?k1e?4y??4e?4y y>0 fY?y???0k1e321?3xx?3x?4ydx?e?e?7x x>0 当y>0时 gX?x???0k2e4???3x?4y01kedy?k1e?3x???当x>0时 gY?y?????yk2e?3x?4ydx?7e?7y y>0

4. 解:①

?1?,0?x?2,0?y?1f?x,y???2

?0,其他?

F?x,y???x0?y0?xy?,0?x?2,0?y?11/2dxdy??2

?0,其他?

fX?x???x0101121dy? 0?x?2;fY?y???0d?1,0?y?1 222FX?x???x0?x?2?1?y?ydx??2 ;FY?y???01dx?? 2其他?0??00?y?1

其它

Py<x2????12111dxdy?1?dxdy? ?y<x22?0?x2235.

?2f?x,y???

?00?x?y?1

其它0?x?1其它

fX?x???x1?2??1?x?2dy??

0??2y2dx??

?0

fY?y???y0?y?1

0其它

0,其它??x?y?1?,0?x?2,1?y?2?0?其它?1?2f?x,y??? x6.①F?x,y??? ,0?x?2,y>20?x?2,1?y?2??2?2?y?1,x>2,1?y?2?1,x?2,y>2?②

G?x,y??PX2?x,Y2?y?P?x<X?x,?y<Y?y?(xy?x)/2,0?x?4,1?y?4?0,x?0,或y?1??x G(x,y)??,0?x?4,y?42?y?1,x>4,1?y?4??1,x>4,y?4?????

讨论如下:

13??21P?x<1,y>?=??dxdy??10?3/2dxdy?1/4

22?D2?<X?x2?P?y1<Y?y2???Fx?x2??Fx?x1??Fy?y2??Fy?y1? 7. 证明:P?x1?? ?Fx,y?x2,y2??Fx,y?x2,y1??Fx,y?x1,y2??Fy?x1,y1? ?P?x1<X?x2,y1<Y?y2? 故独立得证. 8. x1|x2?1 0 1 31 2 3P 9. 解:① Pij?PixPji ②Py?yj????i?1pipji ③Pij?xpipjix?ipipjix

111P?P? P ?01322124421??p?y??1?p?x?0? 故不独立. ② P11410. 解:① P11?11. x y y1 y2 y3 pix x1 1/24 1/8 1/6 1/8 3/8 1/2 1/12 1/4 1/3 p1,p2,?,pn1/4 3/4 1 x2 pj yp11,p12,?,p1np21,p22,?,p2n独立p1,p2,?,pn?pp,?p12m12. 证明:必要性: 由:

??????

pm1,pm2,?,pmn?秩为1

p1,p2,?,pnp11,p12,?,p1np11,p12,?,p1np21,p22,?,p2n秩为1p21,p22,?,p2n?充分性,若

??????pm1,pm2,?,pmnpm1,pm2,?,pnm?p?x?x2y?y1??p?x?x2y?y2??p?x?x2y?y3???p?x?x2y?yn??p?x?xy?y??p?x?xy?y??p?x?xy?y???p?x?xy?y??1112131n??

...?..........?p?x?xmy?y1??p?x?xmy?y2???p?x?xmy?yn?? 从上式可得x与y独立. 13. 解:① X2?Bx?c?0,

有实根的概率 B2?4c?0,PB2?4C?0

???P?2,1??P?3,1??P?3,2??P?4,4??P?4,2??P?4,1??P?4,3?

?P?5,1??P?5,2??P?5,3??P?5,4??P?5,5??P?5,6??P?6,1??P?6,2??P?6,3??P?6,4??P?6,5???P?6,6?

=

19 361 18② PB?4C?0?P?2,1??P?4,4??2??14. 解:fx1y1?x,y??f?x,y? fy1?y?x>0 其它k1e?3x?4y?3e?3x?? 当 y?0时, fx1y1?x,y??k1?4y?0e3 当 y<0时, fx1y1?x|y??0x????,???

?4e?4y,y?0 当 x?0时, fy1|x1(y|x)=f1(x,y)/fX1(x)??

?0,y?0 当 x<0时 fy1x1?xy??0??<y<??

f2?x,y??3e?3x?3y??② 当 y?0时, fx2y2?x,y??fy2?y??0Y<0时,fx2x?y x?yy2(x,y)?0 x?(??,??)

?4e?4y0?y?x?f(x,y)?4x??当X≥0时,fy2x2(yx)?2 (1?e)fx2z(x)?0其它?当X<0时,

fy2x2(yx)=0,y?(??,??)

215.解 1.由S(D)=4?1/2?7

得X与Y的联合密度函数为f(x,y)???27(x,y)?D

0其它?2. 由于0≤y≤1时,f(x,y)??从而 0≤y≤1时,fy(y)??2/70?x?y?1

其它?0f(x,y)dx??y?10?????2dx?2(y?1)

77

??27又 1≤y≤3时,f(x,y)????0从而 1≤y≤3时,fy(y)?y?1?x?2其它2y?1?????f(x,y)dx??2/7dx?2(3?y); 7又当Y<0时,Y>3时,f(x,y)=0,从而fY(y)=?????f(x,y)dx?0

2y?1)/70?y?1?(?23?y)/71?y?3 综上得: fy(y)??(?0其它???270?y?x?1此外,0≤X≤1时,f(x,y)??

?其它?0从而 0≤X≤1时,fx(x)??????f(x,y)dx??x?102dy?2(x?1)

77

??27当 1≤X≤2时,f(x,y)????0从而 1≤X≤2时,fx(x)?当X<0或X>2时,f(x,y)=0 从而fx(x)?x?1?y?x?1其它?????f(x,y)dy??2dy?4

7x?17x?1?????f(x,y)dy?0

2x?1)/70?x?1?(?41?x?2 综上得:fx(x)??7?0其它?16. 证明:

??1Da?x?b又?(x)?y??(x) (1)f(x,y)??

?其它?0


习题三龙永红版答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:音乐术语

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: