?22x2??所以: E?YX?x)???331?x?0?46.看成伯努利试验,X~b(120,
0P(A)?1-[C120(0?x?1
其它1019120)()20201)→X~P(6)泊松分布or X~ N(6,5.7),A=“X≥10” 20119119119129?C120()1()19?C120()2()18????C120()9()11]202020202020 =采用泊松分布或正态分布近似计算
=0.0465(二项分布计算结果)
P(A)=0.022529+0.011264+0.005199+0.002228+0.000891+0.000334+0.000118+0.000039
+0.000012+0.000004+0.000001=0.042619---泊松分布 P(A)=1-F(10)=1-Ф0[(10-6)/σ] σ2=5.7
=1-Ф0[1.675415827737….]=1-0.95352 or 0.95244=0.04648 or 0.04756 显然,本题正态分布比泊松分布更准确。
47.X=开动生产的机床数 X~b(200,0.7) 所以X~N(140,42) 设以95%以上概率保证正常生产机器为K台,则 P(X≤K)≥0.95??(K)??0(K?140)?0.95 42所以 (K?140)?1.65?K?150.7 所以K=151台 421 X1, X2相互独立, 12所以 各电能≥K×15=2265个电能单位,以95%保证机器都正常 48.Xi~U??0.5,0.5?,EXi?0,DXi?X??xi~N(0,300?i?13001)?X~N(0,25),X的均值为0,所以密度函数关于原点对称 12(1)P(?xi?1300i?15)?p(x?15)?2(?(??)??(15))?2?2?(15)
=2(1??0(3))?0.0027 (2)X=X1+?+XN~N(0,
n) 12 P(x?10)?p(?10?x?10)?2?(10)?1?2?(10)?1?0.9 n12 ?0(1012所以 n=440.
n)?0.95?1012n?1.65?n?440.77