图2-3
图2-4
图2-5
图2-6
10
图2-7
图2-8
分析结果:只在凸台处出现厚度偏大,其余都满足厚度要求,所以塑件壁厚合理。 2.2.4 圆角设计
塑件除特殊要求的圆角之和塑件某些特殊部位如分型面、型芯和型腔配合处不便作圆角,而只能采用尖角外,其余所以转角处均应尽采用圆角过度,因为制件尖角处易产生应力集中,导致塑件制件破裂或失效;同时圆角过度使料流平滑绕过,大大改善了塑料的冲模特性;塑件设计成圆角,尤其是外圆角,使模具型腔对应部位也是圆角,增加了模具的坚固性。通常塑件理想的内圆角半径应有壁厚的1/4以上[3]。这里因塑件外圆角半径为4mm,塑件内圆角设为2mm(外圆角半径减去壁厚2mm),凸台圆角半径为1mm。
11
2.3 修正后的产品图
第三章 模具结构设计
3.1 分型面位置的确定
分型面的选择原则[1]:
(1)便于塑件脱模,尽量使塑件开模时留在动模一侧。 (2)分型面应尽量选在塑件的最大截面处。
(3)有利于保证塑件的精度要求。 (4)有利于浇注系统、排气系统、冷却系统的设置和
12
模具型腔的加工。
(5)便于嵌件的安装。
确定结果:分型面选在塑件的投影面最大的部位,如 图3-1。 图3-1
3.2 型腔数量和排列方式的确定
3.2.1 型腔数量的确定
模具型腔数量的确定要综合考虑塑件的技术质量要求、产品的生产数量、塑料的种类、塑件的形状、塑件的加工成本、注塑机的额定最设量和锁模力等因素。 单腔模具、多腔模各自的缺点和使用范围:单型腔模具结构相对简单,设计自由度较大,成型塑件的形状和尺寸的一致性好,塑件精度较高;多型腔模具的结构复杂,生产效率高,分配到单个塑件上的成本低。单型腔模具宜用于大型或精度要求较高的塑件的注塑成型,多型腔模具特别使用于精度要求不是很高、结构较易冲型的中小型塑件的大批生产。
型腔数量的确定:因本次设计的塑料罩类零件的精度要求不高;注塑用塑料ABS的成型性能良好;塑件属小型塑件。综合塑件的尺寸,考虑到模具制造费用、设备运转费用低一些,这里初步拟定采用
一模四腔的模具成型。 图3-2 型腔排列方式 3.2.2 产品布局
型腔排列形式采用矩形对称布局,如 图3-2所示。
3.3 脱模机构方案的确定
塑件结构分析:该塑件的侧壁带有对称布置的侧孔,需通过可侧向移动的侧型芯来成型侧孔,以便在脱模之前先抽掉侧向成型零件。 3.3.1 脱模机构的设计原则[4]
(1)塑件滞留于动模边,以便借助于开模力驱动脱模装置,完成脱模动作。 (2)由于塑件收缩时包紧型芯,因此推出力作用点尽量靠近型芯,同时推出力应施于塑件刚性和强度最大的部位以保证塑件不因推出而变形损坏。 (3)结构简单、动作合理可靠、合模时能正确复位,便于制造和维护。
13
常用的推出方式有推杆推出、推板推出、气压推出,其中推杆脱模机构最为常用,采用推杆脱模机构可以简化模具结构,给制造和维护带来方便。 3.3.2 脱模机构的可行方案设计
因本次设计的塑件有侧孔,需要增加滑块以完成侧向抽芯,设计了以下四种可能的脱模机构,通过比较选择最优方案。
图3-3(滑块外侧抽芯)脱模机构1
方案1:如 图3-3 合模时弹簧处于锁紧状态,开模后动模往后退时,滑块在压缩弹簧的作用下向外侧滑动完成侧抽芯,然后在顶杆的作用下将塑件顶出;合模时,通过定模侧契紧块与滑块的斜面作用使滑块向内侧滑动直至合模完毕,整个过程都能自动开合模,工人劳动强度小,且侧型芯伸入到凸模一段长度,避免了横线飞边,减少了成型后的加工余量。
14