天津职业技术师范大学2013届本科生毕业论文
1.2 mm wire,GMA current;300 A;WFS;19.2m/min(Peak current;452A,base current;129A,Peak current time;1.6ms,base current time;1.1ms)
1.4 mm wire,GMA current;200 A;WFS;7.2m/min(Peak current;400A,base current;98A,Peak current time;2.1ms,base current time;4.5ms)
2.4 mm wire,GMA current;150 A;WFS;2.7m/min(Peak current;450A,base current;75A,Peak current time;3.8ms,base current time;12.2ms)
Fig. 4. Droplet transfer in GMA welding at transition average current
GMA
current;120A;WFS;12m/min(Peak
current;140A,base
current;100A,Peak
current
time;5ms,base current time;5ms)
36
天津职业技术师范大学2013届本科生毕业论文
GMA
current;145A;WFS;16m/min(Peak
current;190A,base
current;100A,Peak
time;5ms,base current time;5ms)
GMA
current;175A;WFS;20m/min(Peak
current;250A,base
current;100A,Peak
time;5ms,base current time;5ms)
Fig. 5. Droplet transfer in plasma-GMA hybrid welding with 1.2 mm wire
GMA
current;165A;WFS;12m/min(Peak
current;230A,base
current;100A,Peak
time;5ms,base current time;5ms)
GMA
current;200;WFS;16m/min(Peak
current;300A,base
current;100A,Peak
time;5ms,base current time;5ms)
37
current
current
current
current
天津职业技术师范大学2013届本科生毕业论文
GMA
current;240;WFS;20m/min(Peak
current;380A,base
current;100A,Peak
current
time;5ms,base current time;5ms)
Fig. 6. Droplet transfer in plasma-GMA hybrid welding with 1.6 mm wire
4.Conclusions
The droplet transfer behaviours for GMA welding and plasma-GMA hybrid welding were investigated in this study. In GMA welding with Al 5183 filler wire, explosive droplet transfer was observed when the welding current was increased. The current at which the transition from stable transfer to explosive transfer occurs decreased with increasing filler wire diameter. In plasma-GMA hybrid welding,the surrounding plasma arc could supply additional heat and stabilize the transfer of droplets for GMA welding. For a 1.6mmdiameter wire, the melting rate afforded by plasma-GMA hybrid welding was almost three times that afforded by GMA welding.
References
[1] E. Halmoy, Wire melting rate, droplet temperature, and effective anode melting potential, in: W. Lucas (Ed.), Arc Physics and Weld Pool Behavior, The Welding Institute, Cambridge, 1980, pp. 49-57. [2] J.H. Waszink, G.J.P.M. Van den Heuvel, Heat generation and heat flow in the filler metal in GMA welding, Weld. J. 61 (1982) 269s-282s.
[3] M.J. Lu, S. Kou, Power inputs in gas metal arc welding of aluminum e part 1, Weld. J. 68 (1989) 382s-388s.
[4] V.A. Nemchisky, Heat transfer in a liquid droplet hanging at the tip of an electrode during arc welding, J. Phys. D: Appl. Phys. 30 (1997)1120-1124.
[5] V.A. Nemchinsky, Heat transfer in an electrode during arc welding with a consumable electrode, J. Phys. D: Appl. Phys. 31 (1998) 730-736.
38
天津职业技术师范大学2013届本科生毕业论文
[6] R.A. Woods, Metal transfer in aluminum alloys, Weld. J. 59 (1980) 59s-66s.
[7] W.G. Essers, G. Jelmorini, G.W. Tichelaar, Plasma-MIG welding, Philips Tech.Rev. 33 (1973) 21-24.
[8] W.G. Essers, New process combines plasma with GMA welding, Weld. J. 55 (1976) 394-400. [9] W.G. Essers, G.W. Tichelaar, G.A. M Willems, Plasma-MIG welding of aluminum, Aluminum 53 (1977) 663-666.
[10] M. Kusch, K.-J. Matthes, Plasma-MIG welding of aluminum materials, DVS Rep. BD 209 (2000) 47-50.
[11] K. Ono, Z. Liu, T. Era, T. Uezono, T. Ueyama,M.Tanaka, K. Nakata,Development of a plasma MIG welding system for aluminum,Weld.Int. References 23 (2009) 805-809.
[12] Y.-S. Kim, D.M. McEligot, T.W. Eagar, Analyses of electrode heat transfer in gas metal arc welding, Weld. J. 70 (1991) 20s-31s.
[13] W.G. Essers, R. Walter, Heat transfer and penetration mechanisms with GMA and plasma-GMA welding, Weld. J. 60 (1981) 37s-42s.
[14] M.J. Lu, S. Kou, Power inputs in gas metal arc welding of aluminum e part 2,Weld. J. 68 (1989) 452s-456s.
\\
39
天津职业技术师范大学2013届本科生毕业论文
附录2:中文翻译
液滴转移在常规保护气金属电弧和等离子体气体金属电弧混
合焊接与Al 5183填充金属.
C.-H. Kim*, Y.-N. Ahn, K.-B. Lee
关键词:焊接 GMAW 等离子gma混合焊接 液滴转移 Al 5183填料
摘要:
当焊接与5 xxx系列铝填料电线,爆炸发生在液滴的液滴转移,从而导致飞溅形成。
在等离子体gma(气体金属电弧)混合焊接,同轴等离子弧围绕GMA使更稳定的液滴转移和降低GMA电流。在这个研究中,珠在板焊接测试采用的是传统的GMA焊、等离子早安混合焊接。针对这两个过程液滴转移行为观察使用高速成像,和液滴行为分析在不同爆炸焊接条件。在等离子体gma焊接,液滴转移是没有空中爆炸,甚至稳定高焊接电流和较高的熔化速率是通过额外的等离子弧。
1介绍
在GMA(气体金属电弧)焊接,焊接电弧是建立美联储不断填充焊丝之间和基材。这个填充焊丝融化的焊接电弧等离子体和水滴的融化的合金在焊接电弧和旅行到焊缝池。热过程,发生在液滴形成和转移是由几个研究人员调查,它被发现,水滴是由周围的焊接电弧过热和他们的温度高于融化的填充金属。此外,过热的水滴随着焊接电流。与铝填充线包含毫克,比如5xxx系列填充焊丝,高蒸气压元素在电线导致飞行中爆炸的水滴。
焊接过程的等离子gma混合提出的1970年代。 在等离子体gma混合焊接,一个气体金属电弧是定位内部采用等离子弧之间建立一种等离子体喷嘴和基材.热量从周围的等离子弧被发现稳定液滴转移在GMA焊,即使对于低焊接电流。在大电流焊接铝合金,等离子弧也可以提供额外的热量向基材和稳定液滴转移没有空中爆炸但有很
40