x?2y?3?123324?9?z2.
(1)6x?6y2 (2)
dz?(3xy-y)dx+(x-3yx)dy,(3)3
I?12yy)dx??21 (4)交换二次积分的积分秩序有:
?0dy?0f(x,0dx?xf(x,y)dy2
(5) ?yds?3?2I?2a2?aL
?102xdx2. (6)
??dxdy?D .
?1 (7)
2 (注:对f(x,x2)?1两边对x求全导数有
f?x,x2)?f?2又已知f?21(2(x,x)2x?0,1(x,x)?x;?x?f?2?,x2)??12(x,x)2x?0?f2(x2)
(8)??2 (9)yex?C (10) y?(c3x1?c2x)e
二(7分)解:设
F(x,y,z)?x2?2y?z2?3z,则:Fx?2x,Fz?2z?3.(2分)
故z2xx?3?2z(2分)
再一次对x 求偏导数,得
?2z2(3?2z)?2x?2?z6?4z?4x2x3?2zx2?x2??x2分(3?2z)2?(3?2z)2?(6?4z)(3?2z)?8(3?2z)38z2??24z?18?8x23分(3?2z).(1)
三 (7分)解 设两直角边
x,y则周长x?y?l
且
x2?y2?l2
记F?x?y?l??(x2?y2?l2) (3分)
??Fx?1?2?x?0?Fy?1?2?y?0??x2?y2?l2 (2分)
得当
x?y?22l时,有最大周长 (2分)
- 6 -
四(7分)解:
??x222y2dxdy??221xdx?x112dy??1x(?1Dxyy)x1dx(4分)x?23?x)dx?(x4?x229
?1(x42)1?4.(3分)
五 (10分)解 :记?2221为曲面z?0;x?y?a下侧,(1分)
I???x3dydz?y3dzdx?z3dxdy???????(2分)则有:
????1?1
??x3dydz?y3dzdx?z3dxdy?0;(2分)?1
所以:
I???x3dydz?y3dzdx?z3dxdy???????????1?1????x3dydz?y3dzdx?z3dxdy(高斯公式)(3分)???1?3???(x2?y2?z2)dxdydz(球坐标)??5?3?2?46?a0d?`?2a0d??0rsin?dr?5(2分)
六(10分)解:
?P?Q?y??1,?x?3(3分)green公式(3分)?????(3?1)dxdy?4?32x(2分)330dx?0dy?4?2x0LD3dx?12(2分)
或法2:
?P?y??1,?Q?x?3green公式????(3?1)dxdy(由积分的几何意义)?12LD
七 (10分)解 :由柱坐标:
M????zdV(2分)??2?1210d??20rdr?12zdz(4分)??2r?2?0d??20(z2r2)rdr2?2??2(rr502?8)dr?2?3.(4分)
- 7 -
八、(10分)解:先解得 r2?r?6??0?r1?3,r2??2 (2分)
故对应齐次方程的通解为y?c3x?2x1e?c2e (2分)
??0不是特征根, 设 y*?b0x?b1 代入原方程有 (2分)
?b50?6b0x?6b1?5x,?b0??56,,b1?36 (2分)
所以 非齐次方程的通解为:
y?c3x?2x1e?c2e?56x?536 (2分)
九(9分)解:因为曲线积分与路径无关,所以
?P32?y??Q?x,而P?2y?(x),Q?[?(x)?12x2]y?3y?(x)?(??(x)?x)y(3分)3?(x)???(x)?x???(x)?3?(x)?x
?(x)?e3x(?xe?3xdx?c)?e3x(?1?3x3?xde?c)?e3x(?1?3x?3x113x3xe?13?edx?c)??3x?9?ce(3分)(1)
记点 A(1,0),则
?32?(x)?12]ydy?0??10[?(1)?1OA?AB2y?(x)dx?[2x2]ydy?14(2分)??(1)?1?122??(1)?1
?(1)?1??4313?3代回(1)得
9?ce?c?9e,
?(x)??11?33x??1399e3x(1分)
2007级高等数学[下]期末试卷参考解答 2一、(1)
fx?fycosx?2xfz; (2)exsin2y(2xsin2ydx?2x2cos2ydy);2(3)
2x?y?4; (4)
?1dy?2yf(x,y)dx; (5) 1 ; (6)2?a2;
7)4?ah;- 8 -
(
(8)a?2; (9)y?ce?2x?be?x; (10)y?C1cos3x?C2sin3x ?Fx?3x2y2z???0??F3y?2xyz???0??Fx3y2z????0二、[解]:.设F(x,y,z)?x3y2z??(x?y?y?12),令??x?y?z?12,
解得:x?6,y?4,z?2,所以点(6,4,2)为唯一驻点,则所求最大值为6912.
sinxdxdy?三、[解]:
???10dx?xsinxx2?10(sinx?xsinx)dxDxxdy?
?[(x?1)cosx]110?(sinx)0?1?sin1
??x2?y2?x2?y2)dxdy四、[解]:投影区域为
D:x2?y2?1V,
??(2D
??2?250d??10(2?r?r)rdr?6?
?P五、[解]:
Pxy?x?y????Qxy?y?x???1?Q,?y,
?x?3
?(2x?y?4)dx?(5y?3x?6)dy?Q?y??P?x)dxdy???4dxdy?12由格林公式得L=
??(DD2或??30dx?3x04dy?12
六、[解]:补
?z?0,(x21:
?y2?a2)取下侧
I???(x3?az2)dydz?(y3?ax2)dxdz?(z3?ay2)dxdy?
???????????3(x2?y2?z2)dv???ay2dxdy???1?1?D?3?2??d??2a2?3255?129500d??r4sin?dr?0?0d??a0arsin?dr=6?a4?a5?20?a
?2x七、[解]:特征方程为:r2?4r?4?0,r1,2??2,所以
Y?(C1?C2x)e
- 9 -
当a??2时,y?Axe,
*2axA?12,通解为:
y?(C1?C2x)e?2x?12xe2?2x
1eax当a??2时,y*?AeaxA?1(a?2),通解为:
2,
yxy?(C1?C2x)e?2x?(a?2)2
1xf(x)?sinxx八、[解]:因为
P(x,y)?[sinx?f(x)],???Q(x,y)?f(x)?P,由?y??Q?x得:
f?(x)?,
f(x)?1C)通解为:
x(?cosx?,又f(?)?1得C???1
f(x)?1cosx?所以:
x(???1)
九、[解]:设
F(u,x,y)?u??(u)??xyp(t)dt,所以:
Fu?1???(u),Fx??p(x),
?u
Fy?p(y)?p(x)?u,则?x1???(u)??p(y),?y1???(u)
p(y)?z?up(x)?x?p(y)z?(u)?x?p(y)z?(u)1???(u) p(x)?z?(u)?u?y?p(x)z?p(x)z?(u)?p(y)?y1???(u)
p(y)?zp(x)?x?p(x)?z?y?p(y)z?(u)所以:1???(u)?p(x)z?(u)?p(y)1???(u)?0
2008级高等数学[下]期末试卷参考解答及评分标准
一、(每小题4分)1.
?21(x?1113x)dx. 2.
?0dy?yf(x,y)dx. 3.?.4. 2.
????R(x,y,0)dxdy.?(xln3)n5.
D6.
2S?U1.7.
n?0n!.8. 收敛. 9. x2y3?y?C.
10.
y?e??P(x)dx[?Q(x)e?P(x)dxdx?C].
- 10 -