(2)集中器(Concentrator)
集中器是低压电网电能管理系统的中心管理设备和控制设备,负责系统命令的传送、数据通讯、网络管理、事件记录等功能。在本系统中,集中器分为主集中器和从集中器。主、从集中器在结构和功能上没有本质区别,均带有RS-485总线以构成底层通信系统,只是主集中器比从集中器多了MODEM通信功能。
26
图2-1 基于CAN总线的电力远程监测系统
(3)采集单元(Acquisition unit)
采集单元是指用于实时采集台区变压器电能质量参数(如电压、电流、功率因数、变压器油温等)的设备。采集单元带有RS-485通信接口,集中器可随时对其进行数据的采集和命令的发布。采集单元完成了对台区变压器的实时监测。
(4)采集模块(Acquisition module)
采集模块是指用于采集单个用户电能表电能量信息,并将它处理后通过信道将数据传送到系统上一级设备(中级器或集中器)的专用模块。在本系统中,采集模块分为无功模块和有功模块,分别监测台区的总无功电量和总有功电量。
(5)采集终端(Acquisition Terminal)
采集终端是指用于采集多个客户电能表能量信息,并经处理后通过信道将数据传送到系统上一级(中级器或集中器)的设备。在本系统中,采集终端安装在居民区,通过导线连接若干个(1~16个)居民用户表(脉冲表),进行脉冲数累加和存储。采集终端的核心是单片机,具有一个与集中器相连接的RS-485通信接口。 (6) 通信信道 (Channel) 通信信道信号传输的媒体,如无线电、电力线、电话线等。如图2.1所示,以通信信道的不同,可将该系统分为上层星型通信网、中层CAN总线通信网和底层RS-485总线通信网。 7.2 系统的通信传输
电力远程监测系统是一个三级分布式通信系统,包括(1)主站与主集中器之间的MODEM通信;(2)主集中器与从集中器之间的CAN总线通信;(3)集中器与威胜全电子式多功能三相交流电能表之间的RS-485_A总线通信或集中器与采集单元、采集模块、采集终端之间的RS-485_B总线通信[2]。 7.2.1 上层星型通信网
基于VB的电力远程监测系统是以安装在电力局管理中心的系统工作站为中心,通过PSTN电话网以分散的形式,与带MODEM的集中器(在本论文中称为主集中器)进行通信
27
7.2.2 中层CAN总线通信网
主集中器与从集中器通过CAN总线相连,主从集中器在结构和功能上没有本质区别,均带有RS-485总线以构成底层通信系统,只是主集中器比从集中器多了MODEM通信功能。CAN总线上的节点经上电初始化后具有不同的节点地址,并可动态改变地址。主集中器收到上层的命令或数据后,先判断此命令或数据是不是发给自己的,如果是,主集中器将命令或数据下传给其本身的RS-485总线或进行其它相关操作;如果不是,主集中器则把收到的命令或数据通过CAN总线传送给总线上的其它节点——从集中器。从集中器收到CAN总线的命令或数据后,再将其下传到底层的RS-485总线或进行其它相关操作。
7.2.3 底层RS-485总线通信网
底层RS-485总线通信网由两条独立的总线构成:即RS-485_A总线和RS-485_B总线,以适应不同的总线协议要求。RS-485_A总线接口是为适应威胜全电子式多功能三相交流电能表的数据通信协议而建立的通信接口,连接在总线上的威胜电子表具有不同的地址,且地址可动态改变。RS-485_B总线接口实现了采集单元、采集模块、采集终端的互连。采集单元、采集模块和采集终端都有不同的地址,以实现多机通信。RS-485_A总线喝RS-485_B总线构成了两套独立的主从式通信系统,通信的发起者和结束者都是主集中器或从集中器。通信时,集中器把收到的命令或数据(含地址信息)发送到总线上,总线上的485从机进入通信中断后,先进行地址判别,若收到的地址信息与本机地址相同,则进行相关的操作;若不相同,则退出中断。
7.3 系统的工作过程和功能
从图2.1已经知道,系统主要由主站、电话线、集中器、RS-485总线、采集器、带485总线接口的电度表及脉冲电度表等几个部分组成,系统初次上电时,应先进行系统的配置状态检查:主站计算机发送点名命令,查询从集中器(CAN节点)个数、采集模块个数和采集终端个数,并根据集中器安置情况和采集终端安装情况自动生成系统网络拓扑图。然后,系统即可依据主站命令,进入正常的监测、管理状态。
28
基于VB的电力远程监测系统具有配电变压器运行参数远程监测、电能质量参数分析、低压用户用电参数远程监测、系统故障自检、测量参数分析、测量参数记录、数据显示与打印、曲线显示与打印、系统保密、病毒防护、报表生成、历史数据查询、知识查询、分时计费、欠费断电等多种功能。
7.4 系统的特点
(1)系统在国内同类产品中首次采用高性能16位单片机作为集中器,具有良好的系统性能。
(2)采集器可根据现场需要,连接1~16户居民的电能表。 (3)每个采集器均设有一路电压实时检测终端。
(4)由于采用有线信道,为实现用户电能表网络化管理以及“一户一表,抄表到户”制度提供了高效、科学的手段,系统的误码率低于10—7。
(5)系统软硬件设计采用模块化、多冗余设计,既可保证设备工作的可靠性,又能使系统易于扩充和软件升级。
(6)多种通信接口可满足市话网、CAN总线、RS-485专用线等多种通信方式实现数据的传输,满足电力管理部门对不同信道的要求。
(7)系统计费、计时精度高,无脉冲丢失产生,对电能计量不会附加任何误差。
(8)抄表速度可达400户/min。
(9)系统设计考虑了后续发展要求,便于与台区变压器远程监测系统、变电站远程监测系统融合,组建电力远程监测综合管理专家系统[2]。 7.5系统软件流程
电力远程监测系统的主机软件采用Visual Basic开发,软件设计遵循模块设计思想,采用结构化程序设计方案,具有较好的模块性、可移植性和修改性。Visual Basic继承了Basic简便易学的优点,同时具有友好的可视化编程界面,编程方便效率高,并且支持一套出色的数据库访问技术,成为目前最流行的数据库应用软件变成工具之一, 有利于在短时期内实现一个完整的功能强大的并且易于操作的应用软件。 7.5.1 系统的主站软件流程
29
本系统主站采用的是模块化的设计方法。模块化就是把一个完整的
程序分若干个小块,其中每个小块完成一个子功能,而把这小块集合起来组成一个整体,就可以实现系统的整体功能。电力远程监测系统是一个复杂的大型系统,利用模块化的思想设计系统软件,可以使程序容易设计、阅读和理解,软件结构非常清晰。基于模块化的程序设计方法,本系统工作流程主要有系统工作流程、系统点名流程、抄表命令流程、设置命令流程、广播命令流程。 7.5.2 系统工作流程
30