fname=基于单片机实现直流电机PWM调速系统毕业设计(最新)(4)

2019-03-10 21:08

西京学院学士学位论文 致谢 输入电压范围:-0.5V—VDD+0.5V 输入电流范围:±10mA

贮存温度范围:-65°C—150°C (2)芯片4040引出端功能符号:

CP: 时钟输入端 CR:清除端 Q0—Q11:计数脉冲输出端 VDD: 正电源 VSS: 地端 (3)芯片4040功能表:

输入 CP ↑ ↓ * CR L L H 保持 计数 所有输出端均为L 输出 表1.5芯片4040功能表

(4)芯片4040的引脚图:

图1.12芯片4040的引脚图

1.3 功率放大驱动电路设计

该驱动电路采用了IR2110集成芯片,该集成电路具有较强的驱动能力和保护功能。

1.3.1 芯片IR2110性能及特点

IR2110是美国国际整流器公司利用自身独有的高压集成电路以及无闩锁CMOS技术,于1990年前后开发并且投放市场的,IR2110是一种双通道高压、高

西京学院学士学位论文 致谢 速的功率器件栅极驱动的单片式集成驱动器。它把驱动高压侧和低压侧MOSFET或IGBT所需的绝大部分功能集成在一个高性能的封装内,外接很少的分立元件就能提供极快的功耗,它的特点在于,将输入逻辑信号转换成同相低阻输出驱动信号,可以驱动同一桥臂的两路输出,驱动能力强,响应速度快,工作电压比较高,可以达到600V,其内设欠压封锁,成本低、易于调试。高压侧驱动采用外部自举电容上电,与其他驱动电路相比,它在设计上大大减少了驱动变压器和电容的数目,使得MOSFET和IGBT的驱动电路设计大为简化,而且它可以实现对MOSFET和IGBT的最优驱动,还具有快速完整的保护功能。与此同时,IR2110的研制成功并且投入应用可以极大地提高控制系统的可靠性。降低了产品成本和减少体积。

1.3.2 IR2110的引脚图以及功能

引脚1(LO)与引脚7(HO):对应引脚12以及引脚10的两路驱动信号输出端,使用中,分别通过一电阻接主电路中下上通道MOSFET的栅极,为了防止干扰,通常分别在引脚1与引脚2以及引脚7与引脚5之间并接一个10KΩ的电阻。

引脚2(COM):下通道MOSFET驱动输出参考地端,使用中,与引脚13(Vss)直接相连,同时接主电路桥臂下通道MOSFET的源极。

引脚3(Vcc):直接接用户提供的输出极电源正极,并且通过一个较高品质的电容接引脚2。

引脚5(Vs):上通道MOSFET驱动信号输出参考地端,使用中,与主电路中上下通道被驱动MOSFET的源极相通。

与引脚6(VB):通过一阴极连接到该端阳极连接到引脚3的高反压快恢复二极管,与用户提供的输出极电源相连,对Vcc的参数要求为大于或等于—0.5V,而小于或等于+20V。

引脚9(VDD):芯片输入级工作电源端,使用中,接用户为该芯片工作提供的高性能电源,为抗干扰,该端应通过一高性能去耦网络接地,该端可与引脚3(Vcc)使用同一电源,也可以分开使用两个独立的电源。

引脚10(HIN)与引脚12(LIN):驱动逆变桥中同桥臂上下两个功率MOS

西京学院学士学位论文 致谢 器件的驱动脉冲信号输入端。应用中,接用户脉冲形成部分的对应两路输出,对此两个信号的限制为Vss-0.5V至Vcc+0.5V,这里Vss 与Vcc分别为连接到IR2110的引脚13(Vss)与引脚9(VDD)端的电压值。

引脚11(SD):保护信号输入端,当该引脚为高电平时,IR2110的输出信号全部被封锁,其对应的输出端恒为低电平,而当该端接低电平时,则IR2110的输出跟随引脚10与12而变化。

引脚13(Vss):芯片工作参考地端,使用中,直接与供电电源地端相连,所有去耦电容的一端应接该端,同时与引脚2直接相连。

引脚8、引脚14、引脚4:为空引脚。 芯片参数:

1.IR2110的极限参数和限制:

最大高端工作电源电压VB: -0.3V至525V 门极驱动输出最大(脉冲)电流IOMAX:2A 最高工作频率fmax:1MHz 工作电源电压Vcc:-0.3V至25V 贮存温度Tstg:-55至150°C 工作温度范围TA:-40至125°C 允许最高结温Tjmax:150°C 逻辑电源电压VDD:-0.3V至VSS+25V

允许参考电压Vs临界上升率dVs/dt:50000V/μs 高端悬浮电源参考电压Vs:VB-25V至VB+0.3V 高端悬浮输出电压VHO:Vs-0.3V至VB+0.3V 逻辑输入电压VIN:Vss-0.3V至VDD+0.3V 逻辑输入参考电压Vss:Vcc-25V至Vcc+0.3V 低端输出电压VLO:-0.3V至Vcc+0.3V 功耗PD:DIP-14封装为1.6W 2.IR2110的推荐工作条件:

高端悬浮电源绝对值电压VB:Vs+10V至Vs+20V 低端输出电压VLO:0至Vcc

西京学院学士学位论文 致谢 低端工作电源电压Vcc:10V至20V 逻辑电源电压VDD: Vss+5V至Vss+20V 逻辑电源参考电压Vss: -5V至+5V

图1.13 IR2110芯片

1.4 主电路设计

1.4.1 延时保护电路

利用IR2110芯片的完善设计可以实现延时保护电路。

R2110使它自身可对输入的两个通道信号之间产生合适的延时,保证了加到被驱动的逆变桥中同桥臂上的两个功率MOS器件的驱动信号之间有一互琐时间间隔,因而防止了被驱动的逆变桥中两个功率MOS器件同时导通而发生直流电源直通路的危险。 1.4.2 主电路

从上面的原理可以看出,产生高压侧门极驱动电压的前提是低压侧必须有开关的动作,在高压侧截止期间低压侧必须导通,才能够给自举电容提供充电的通路。因此在这个电路中,Q1、Q4或者Q2、Q3是不可能持续、不间断的导通的。我们可以采取双PWM信号来控制直流电机的正转以及它的速度。

将IC1的HIN端与IC2的LIN端相连,而把IC1的LIN端与IC2的HIN端相连,这样就使得两片芯片所输出的信号恰好相反。

在HIN为高电平期间,Q1、Q4导通,在直流电机上加正向的工作电压。其

西京学院学士学位论文 致谢 具体的操作步骤如下:

当IC1的LO为低电平而HO为高电平的时候,Q2截止,C1上的电压经过VB、IC内部电路和HO端加在Q1的栅极上,从而使得Q1导通。同理,此时IC2的HO为低电平而LO为高电平,Q3截止,C3上的电压经过VB、IC内部电路和HO端加在Q4的栅极上,从而使得Q4导通。

电源经Q1至电动机的正极经过整个直流电机后再通过Q4到达零电位,完成整个的回路。此时直流电机正转。

在HIN为低电平期间,LIN端输入高电平,Q2、Q3导通,在直流电机上加反向工作电压。其具体的操作步骤如下:

当IC1的LO为高电平而HO为低电平的时候,Q2导通且Q1截止。此时Q2的漏极近乎于零电平,Vcc通过D1向C1充电,为Q1的又一次导通作准备。同理可知,IC2的HO为高电平而LO为低电平,Q3导通且Q4截止,Q3的漏极近乎于零电平,此时Vcc通过D2向C3充电,为Q4的又一次导通作准备。

电源经Q3至电动机的负极经过整个直流电机后再通过Q2到达零电位,完成整个的回路。此时,直流电机反转。

因此电枢上的工作电压是双极性矩形脉冲波形,由于存在着机械惯性的缘故,电动机转向和转速是由矩形脉冲电压的平均值来决定的。

设PWM波的周期为T,HIN为高电平的时间为t1,这里忽略死区时间,那么LIN为高电平的时间就为T-t1。HIN信号的占空比为D=t1/T。设电源电压为V,那么电枢电压的平均值为:

Vout= [ t1 - ( T - t1 ) ] V / T = ( 2 t1 – T ) V / T = ( 2D – 1 )V

定义负载电压系数为λ,λ= Vout / V, 那么 λ= 2D – 1 ;当T为常数时,改变HIN为高电平的时间t1,也就改变了占空比D,从而达到了改变Vout的目的。D在0—1之间变化,因此λ在±1之间变化。如果我们联系改变λ,那么便可以实现电机正向的无级调速。

当λ=0.5时,Vout=0,此时电机的转速为0; 当0.5<λ<1时,Vout为正,电机正转;


fname=基于单片机实现直流电机PWM调速系统毕业设计(最新)(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:突发事件自救互救题库答案(一节10题全)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: