19.解法一:(Ⅰ)?A1A?平面ABC,BC?平面ABC,
?A1A?BC.
在Rt△ABC中,AB?AC,D为BC中点,
?BC?AD.又AA1?AD?A,
?BC?平面A1AD,又BC?平面BCC1B1,
?平面A1AD?平面BCC1B1.
(Ⅱ)如图,作AE?C1C交C1C于E点,连接BE, 由已知得AB?平面ACC1A1.
?AE是BE在平面ACC1A1内的射影.
由三垂线定理知BE?CC1,
??AEB为二面角A?CC1?B的平面角.
过C1作C1F?AC交AC于F点, 则CF?AC?AF?1,C1F?A1A?3,
??C1CF?60?.
在Rt△AEC中,AE?ACsin60??2?32?3. 在Rt△BAE中,tanAEB?AB223AE?3?3. ??AEB?arctan233, 即二面角A?CC231?B为arctan3. 解法二:(Ⅰ)如图,建立空间直角坐标系,
则A(0,0,,0)B(2,0,,0)C(0,2,,0)A1(0,0,3),C1(01,,3),?D为BC的中点,?D点的坐标为(11,,0).
第 6 页 共 11 页
A1 C1
B1
E
A
F C
B
D (第19题,解法一)
z A1 C1 B1 A B D C y x (第19题,解法二)
?????????????AD??110,3),BC?(?2,2,0). ,,0?,AA1?(0,?????????AD?BC?1?(?2)?1?2?0?0?0,
???????? AA?0?(?2)?0?2?3?0 ?01?BC?BC?AD,BC?AA1,又A1A?AD?A,
?BC?平面A1AD,又BC?平面BCC1B1,?平面A1AD?平面BCC1B1.
????(Ⅱ)?BA?平面ACC1A1,取m?AB?(2,0,0)为平面ACC1A1的法向量, ?????????设平面BC1的法向量为n?(l,m,n),则BC?n?0,CC1?n?0.
?3??2l?2m?0,???l?m,n?m,
3???m?3n?0,?3?,?如图,可取m?1,则n??11?,?, 3??2?1?0?1?cos?m,n??3?032??3?22?02?02?12?12???3??21, 7?二面角A?CC1?B为arccos20.(Ⅰ)?an?1?21. 72ana?11111,??n???,
an?12an22anan?1??11?1211?1???1?,又a1?,??1?, an?12?an3a12????数列?1?1?是以1为首项,1为公比的等比数列.
22?an?(Ⅱ)由(Ⅰ)知
111111nn?1??n?1?n,即?n?1,??n?n. an222an2an2123n?2?2???n, ① 2222112n?1n则Tn?2?3???n?n?1, ② 22222设Tn?第 7 页 共 11 页
①?②得
1?1?1???1111nn1n2?2n?Tn??2???n?n?1??n?1?1?n?n?1,
1222222221?2?Tn?2?1nn(n?1)?1?2?3???.又, 2n?12n2?n?2?nn(n?1)n2?n?4n?2??n. ?数列?? 的前n项和Sn?2?n?2222?an?21.解法一:(Ⅰ)如图,设A(x1,2x12),B(x2,2x22),把y?kx?2代入y?2x2得
2x2?kx?2?0,
k,x1x2??1, 2x?xk?xN?xM?12?,
24由韦达定理得x1?x2?y M 2 B 1 N O 1 x A ?kk2?N点的坐标为?,?48??. ?k2k??设抛物线在点N处的切线l的方程为y??m?x??,
84??mkk2??0, 将y?2x代入上式得2x?mx?4822?直线l与抛物线C相切,
?mkk2????m?8????m2?2mk?k2?(m?k)2?0,?m?k.
8??42即l∥AB.
????????(Ⅱ)假设存在实数k,使NA?NB?0,则NA?NB,
|MN|?又?M是AB的中点,?由(Ⅰ)知yM?1|AB|. 2111(y1?y2)?(kx1?2?kx2?2)?[k(x1?x2)?4] 222?k21?k2???4???2. 2?2?4k2k2k2?16?MN?x轴,?|MN|?|yM?yN|??2??.
488第 8 页 共 11 页
|x1?x2|?1?k?(x1?x2)?4x1x2 又|AB|?1?k?22212?k?2k?1?k2?16. ?1?k????4?(?1)?2?2?2k2?1612??k?1?k2?16.解得k??2.
84????????即存在k??2,使NA?NB?0.
2解法二:(Ⅰ)如图,设A(x1,2x12),B(x2,2x2),把y?kx?2代入y?2x2得
k2x2?kx?2?0.由韦达定理得x1?x2?,x1x2??1.
2?kk2x1?x2k?,?N点的坐标为?,?xN?xM?24?48?2?.?y?2x,?y??4x, ??抛物线在点N处的切线l的斜率为4?k?k,?l∥AB.
4????????k(Ⅱ)假设存在实数,使NA?NB?0.
???????kk2????kk2?22由(Ⅰ)知NA??x1?,2x1??,NB??x2?,2x2??,则
48?48????????????k??k??2k2??2k2?NA?NB??x1???x2????2x1???2x2??
4??4??8??8??k??k??2k2??2k2????x1???x2???4?x1???x2??
4??4??16??16??k??k??k??k??????x1???x2????1?4?x1???x2???
4??4??4??4?????kk2??k2???x1x2??x1?x2?????1?4x1x2?k(x1?x2)??
416??4???kkk2??kk2????1??????1?4?(?1)?k???
4216??24???k2??3????1????3?k2?
16??4???0,
第 9 页 共 11 页
3k2??1??0,??3?k2?0,解得k??2.
416????????即存在k??2,使NA?NB?0.
22.解:(Ⅰ)?f?(x)?3x2?2ax?a2?3?x?又a?0,
??a??(x?a), 3??当x??a或x?aa时,f?(x)?0;当?a?x?时,f?(x)?0, 33a??a???f(x)在(??,?a))和?,???内是增函数,在??a,?内是减函数.
3??3??(Ⅱ)由题意知x?ax?ax?1?ax?2x?1.
即x[x2?(a2?2)]?0恰有一根(含重根).?a?2≤0,即?2≤a≤2, 又a?0,?a?[?2,0)?(0,2].
当a?0时,g(x)才存在最小值,?a?(0,2].
232221?1??g(x)?a?x???1?,
a?a??12??h(a)?1?,a?(0,2].?h(a)的值域为?1??. ???,a2???a)和?,(Ⅲ)当a?0时,f(x)在(??,???内是增函数,g(x)在?,???内是增
函数.
2?a?3???1?a????a?0,?a?由题意得?a≥,解得a≥1.
3?1?a≥.?a???)内是增函数,g(x)在???,?内是增函数. 当a?0时,f(x)在???,?和(?a,??a?3???1?a?第 10 页 共 11 页
??a?0,?a?由题意得?a?2≤, 解得a≤?3.
3?1?a?2≤.?a??3]?[1,??). 综上可知,实数a的取值范围为(??,
B卷选择题答案:
1.C 2.A 7.D 8.B
3.C 4.B 5.C 6.A 9.C 10.D 11.A 12.D 第 11 页 共 11 页