20.解: ∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a1=3. 又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 ∵an+an-1>0 , ∴an-an-1=5 (n≥2).
当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3; 当a1=2时,a3=12, a15=72, 有a32=a1a15 , ∴a1=2, ∴an=5n-3.
→→→→
21.解法一: 如图, (Ⅰ)设D(x0,y0),E(xE,yE),M(x,y).由AD=tAB, BE = t BC,
?xD=-2t+2?xE=-2t
知(xD-2,yD-1)=t(-2,-2). ∴? 同理 ? .
?yD=-2t+1?yE=2t-1
∴kDE =
yE-yD2t-1-(-2t+1)
= = 1-2t. ∴t∈[0,1] , ∴kDE∈[-1,1]. xE-xD-2t-(-2t+2)
→→
(Ⅱ) ∵DM=t DE ∴(x+2t-2,y+2t-1)=t(-2t+2t-2,2t-1+2t-1)=t(-2,4t-2)=(-2t,4t2-
?x=2(1-2t)x22
2t). ∴?2 , ∴y= , 即x=4y. ∵t∈[0,1], x=2(1-2t)∈[-2,2]. 4?y=(1-2t)
即所求轨迹方程为: x2=4y, x∈[-2,2] 解法二: (Ⅰ)同上.
→→→→→→→→
(Ⅱ) 如图, OD=OA+AD = OA+ tAB = OA+ t(OB-OA)
y →→
= (1-t) OA+tOB,
→→→→→→→→→OE = OB+BE = OB+tBC = OB+t(OC-OB) =(1-t) OB→+tOC,
→→→→→→→→→OM = OD+DM= OD+ tDE= OD+t(OE-OD)=(1-t) OD+ →tOE
→→→
= (1-t2) OA + 2(1-t)tOB+t2OC .
C M -2 -1 O E -1 B 1 D A 2 x 第21题解法图 →→→
设M点的坐标为(x,y),由OA=(2,1), OB=(0,-1), OC=(-2,1)得
?x=(1-t2)22+2(1-t)t20+t22(-2)=2(1-2t)2?222 消去t得x=4y, ∵t∈[0,1], x∈[-2,2]. ?y=(1-t)21+2(1-t)t2(-1)+t21=(1-2t)
故所求轨迹方程为: x2=4y, x∈[-2,2]
22.解: (I)当k=0时, f(x)=-3x2+1 ∴f(x)的单调增区间为(-∞,0],单调减区间[0,+∞). 2
当k>0时 , f '(x)=3kx2-6x=3kx(x-) k
22
∴f(x)的单调增区间为(-∞,0] , [ , +∞), 单调减区间为[0, ].
kk(II)当k=0时, 函数f(x)不存在最小值.
- 6 -
2812
当k>0时, 依题意 f()= 2 - 2 +1>0 ,
kkk即k2>4 , 由条件k>0, 所以k的取值范围为(2,+∞)
- 7 -